• Title/Summary/Keyword: Furling

Search Result 6, Processing Time 0.031 seconds

Development of the Furling Control Type Small Wind Turbine System (과풍속 출력 제한형 소형 풍력 발전장치 개발)

  • Choi, Young-Chul;Kim, Chul-Ho;Lee, Hyun-Chae;Seo, Young-Taek;Han, Young-Oun;Song, Jung-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.693-701
    • /
    • 2012
  • In this study, a small wind turbine airfoil specialized for national wind condition was designed in order to develop the furling control type HAWT. And then a flow analysis was carried out based on the blade drawing which was designed to characterize of the developed airfoil. The result of the flow analysis showed that the torque on the 3 blades was 180.23N.m. This is equivalent to an output power of 5.66kw and an output efficiency of 0.44. Then we produced and constructed a 3kW - furling control type HAWT by getting the system unit design technology such as the specialized furling control device. By operating this turbine, we could get 3kW of the rated power at a wind speed of 10.5m/s through the ability test. Cut-in wind speed was 2m/s, generator efficiency was 92% at the rated power output. Sound power level was 87.2dB(A). Also we observed that the output power was limited to 10.5m/s with furling system operation.

Development of an Analysis Program for Small Horizontal Wind Turbines Considering Side Furling and Optimal Torque Scheduling (사이드 펄링과 최적 토크스케줄을 고려한 소형 풍력터빈 해석 프로그램 개발)

  • Jang, Hyeon-Mu;Kim, Dong-Myeong;Paek, In-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.2
    • /
    • pp.15-31
    • /
    • 2018
  • A program to design a small capacity wind turbine blade is proposed in this study. The program is based on a matlab GUI environment and designed to perform blade design based on the blade element momentum theory. The program is different from other simulation tools available in a point that it can analyze the side-furling power regulation mechanism and also has an algorithm to find out optimal torque schedule above the rated wind speed region. The side-furling power regulation is used for small-capacity horizontal axis wind turbines because they cannot use active pitch control due to high cost which is commonly used for large-capacity wind turbine. Also, the torque schedule above the rated wind speed region should be different from that of the large capacity wind turbines because active pitching is not used. The program developed in this study was validated with the results with FAST which is the only program that can analyze the performance of side-furled wind turbines. For the validation a commercial 10 kW wind turbine data which is available in the literature was used. From the validation, it was found that the performance prediction from the proposed simple program is close to those from FAST. It was also found that the optimal torque scheduling from the proposed program was found to increase the turbine power substantially. Further experimental validation will be performed as a future work.

A study of overspeed-protection furling mechanism of Small Wind Turbine (소형 풍력의 과풍속 보호 장치에 관한 연구)

  • Kim, Hyoung-Gil;Kim, Chul-Ho;Seo, Young-Taek;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.959-960
    • /
    • 2007
  • The wind power has been used steadily since long ago, but the importance of it has been faded because of the abundant and convenient fossil energy. Now, due to the energy crisis, experiencing the environmental problems etc, the necessity of using it growing bigger. Because the small wind turbines under a few kW grade has the merits of setting up with low costs by individuals, and get the energy saving effects that, it has the secured, separate markets from the range systems, and the developing of it is continuously proceeding. The small wind turbine system must have the output power regulating system for the over wind speed, to run steadily in the various wind speed environment. In case of the small wind turbine system, to prevent the breaking and for safety, at the over wind speed, additional system is required, and in most cases, output power is restricted by mechanical means. In this paper, the furling system makes the tail and the head move to make the blades to the wind in slanted angle, restrict the output power at the over wind speed. In thesis, small prototype wind turbine is made, and analyzing the output power characteristics at the over wind speed, and to verify, through the logical study and tests.

  • PDF

Power Control of Small Wind Power System (소형 풍력발전시스템의 출력제어)

  • Kim, Chul-Ho;Lee, Hyun-Chae;Seo, Young-Taek;Cho, Hwan-Kee
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1066_1067
    • /
    • 2009
  • Wind power is one of most promising renewable energy. The output capacity of large wind turbine has been increased for off-shore application. Number of installation of small wind turbine also has been increased for the stand-alone and off-grid application of remote area and recently small wind turbine equipped with lamp on the pole is used for street lamp. Maximum wind energy must be extracted by wind turbine within rated wind speed. Power must be controlled to protect the system such as blade, generator, and power system above the rated wind speed. In this paper, small wind power system of 800W rating for battery charging is implemented and output power control by furling system is verified at wind tunnel test.

  • PDF

Microstrip line tunable phase shifter (마이크로스트립 라인 전압제어 가변 대역통과필터)

  • ;Mai linh
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.227-229
    • /
    • 2002
  • In this paper, we report on a microstrip line voltage controlled tunable bandpass filter. We used the characteristic the relative dielectric constant of thin film ferroelectrics depends on the applied dr voltage. we designed using Au/BSTO/MgO/Au structure. We cascaded many resonators for large furling range sustaining 1 GHz renter frequency, narrow band, low IL ($\leq$4 dB). We could design the BPF of which center frequency is 16 GHz, 1.9 GHz tuning range, the narrow bandwidth within 800 MHz, low insertion loss less than 3 dB by adjusting the gap of 3 cascaded resonators.

  • PDF

A study on electronic braking system using wind power synchronous generator's armature reaction (풍력용 동기발전기의 전기자 반작용을 이용한 전기 제동방식에 관한 연구)

  • Park, Gui-Yeol;Moon, Chae-Joo;Cheang, Eui-Heang;Chang, Yung-Hak;Kim, Eui-Sun
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.1-8
    • /
    • 2010
  • The mechanical parts of small windp ower generator less than 10kW are manufactured in the form of removing most of the accelerators. The braking system to protect blade from damages caused by high wind speed is manufactured in a manner having apparatus system(furling), manual brake or no brake. This study is on braking system in small size wind power generator, and carried out survey as following steps by applying electric braking system which uses armature reaction. We explained the principle of electric braking system and the principle of existing braking system. Also, this paper interpreted short circuit current through open circuit and short circuit, as well as checking brake system's action using armature reaction with real construction of control device.