• 제목/요약/키워드: Fungicide residues

Search Result 90, Processing Time 0.111 seconds

Development and Validation of an Analytical Method for Fungicide Sedaxane Determination in Agricultural Products using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 살균제 Sedaxane의 잔류시험법 개발 및 검증)

  • Cho, Sung Min;Do, Jung-Ah;Park, Shin-Min;Lee, Han Sol;Park, Ji-Su;Shin, Hye-Sun;Jang, Dong Eun;Choi, Young-Nae;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.30-39
    • /
    • 2019
  • An analytical method was developed for the determination of sedaxane in agricultural products using liquid chromatograph-tandem mass spectrometry (LC-MS/MS). The samples were extracted with acetonitrile and partitioned with dichloromethane to remove the interference, and then purified by using silica SPE cartridges to clean up. The analytes were quantified and confirmed by using LC-MS/MS in positive ion mode using multiple reaction monitoring (MRM). The matrix-matched calibration curves were linear over the calibration ranges ($0.001-0.25{\mu}g/mL$) into a blank extract with $r^2$>0.99. For validation, recovery tests were carried out at three different concentration levels (LOQ, 10LOQ, and 50LOQ, n=5) with five replicates performed at each level. The recoveries were ranged between 74.5 to 100.8% with relative standard deviations (RSDs) of less than 12.1% for all analytes. All values were consistent with the criteria ranges requested in the Codex guidelines (CAC/GL 40, 2003) and Food Safety Evaluation Department guidelines (2016). The proposed analytical method was accurate, effective and sensitive for sedaxane determination in agricultural commodities.

Development of Simultaneous Analytical Method for Streptomycin and Dihydrostreptomycin Detection in Agricultural Products Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 Streptomycin 및 Dihydrostreptomycin 동시시험법 개발)

  • Lee, Han Sol;Do, Jung-Ah;Park, Ji-Su;Park, Shin-Min;Cho, Sung Min;Shin, Hye-Sun;Jang, Dong Eun;Choi, Young-Nae;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.13-21
    • /
    • 2019
  • A method was developed for the simultaneous detection of an antibiotic fungicide, streptomycin, and its metabolite (dihydrostreptomycin) in agricultural products using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The samples were extracted using methanol adjusted to pH 3 using formic acid, and purified with a HLB (Hydrophilic lipophilic balance) cartridge. The matrix-matched calibration curves were constructed using seven concentration levels, from 0.001 to 0.1 mg/kg, and linearity of five agricultural products (hulled rice, potato, soybean, mandarin, green pepper), with coefficients of determination $(R^2){\geq}0.9906$, for streptomycin and dihydrostreptomycin. The mean recoveries at three fortification levels (LOQ, $LOQ{\times}10$, $LOQ{\times}50$, n = 5) were from 72.0~116.5% and from 72.1~116.0%, and relative standard deviations were less than 12.3% and 12.5%, respectively. The limits of quantification (LOQ) were 0.01 mg/kg, which are satisfactory for quantification levels corresponding with the Positive List System. All optimized results satisfied the criteria ranges requested in the Codex guidelines and the Food Safety Evaluation Department guidelines. The present study could serve as a reference for the establishment of maximum residue limits and be used as basic data for detection of streptomycin and dihydrostreptomycin in food.

Development of Analytical Method for Kasugamycin in Agricultural Products using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 Kasugamycin 시험법 개발)

  • Lee, Han Sol;Do, Jung-Ah;Park, Ji-Su;Cho, Sung Min;Shin, Hye-Sun;Jang, Dong Eun;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.3
    • /
    • pp.235-241
    • /
    • 2019
  • An analytical method was developed for the determination of an antibiotic fungicide, kasugamycin, in agricultural products (hulled rice, potato, soybean, mandarin and green pepper) using liquid chromatographytandem mass spectrometry (LC-MS/MS). Samples were extracted with methanol adjusted to pH 13 using 1 N sodium hydroxide, and purified with a HLB (hydrophilic lipophilic balance) cartridge. Linearity of a matrix-matched calibration curve using seven concentration levels, from 0.001 to 0.1 mg/kg, was excellent with a correlation coefficient ($R^2$) of more than 0.9998. The limits of detection (LOD) and quantification (LOQ) of instrument were 0.0005 and $0.001{\mu}g/mL$, respectively, and the LOQ of analytical method calculated as 0.01 mg/kg. The average recoveries at three spiking levels (LOQ, $LOQ{\times}10$, $LOQ{\times}50$, n=5) were in the range of 71.2~95.4% with relative standard deviation of less than 12.1%. The developed method was simple and all optimized results was satisfied with the criteria ranges requested in the Codex guidelines and Food Safety Evaluation Department guidelines. The present study could be served as a reference for the establishment of maximum residue limits (MRL) of kasugamycin and be used as basic data for safety management relative to kasugamycin residues in imported and domestic agricultural products.

Development and Validation of an Analytical Method for Fenpropimorph in Agricultural Products Using QuEChERS and LC-MS/MS (QuEChERS법과 LC-MS/MS를 이용한 농산물 중 Fenpropimorph 시험법 개발 및 검증)

  • Lee, Han Sol;Do, Jung-Ah;Park, Ji-Su;Cho, Sung Min;Shin, Hye-Sun;Jang, Dong Eun;Choi, Young-Nae;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.2
    • /
    • pp.115-123
    • /
    • 2019
  • An analytical method was developed for the determination of fenpropimorph, a morpholine fungicide, in hulled rice, potato, soybean, mandarin and green pepper using QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) sample preparation and LC-MS/MS (liquid chromatography-tandem mass spectrometry). The QuEChERS extraction was performed with acetonitrile followed by addition of anhydrous magnesium sulfate and sodium chloride. After centrifugation, d-SPE (dispersive solid phase extraction) cleanup was conducted using anhydrous magnesium sulfate, primary secondary amine sorbents and graphitized carbon black. The matrix-matched calibration curves were constructed using seven concentration levels, from 0.0025 to 0.25 mg/kg, and their correlation coefficient ($R^2$) of five agricultural products were higher than 0.9899. The limits of detection (LOD) and quantification (LOQ) were 0.001 and 0.0025 mg/kg, respectively, and the limits of quantification for the analytical method were 0.01 mg/kg. Average recoveries spiked at three levels (LOQ, $LOQ{\times}10$, $LOQ{\times}50$, n=5) and were in the range of 90.9~110.5% with associated relative standard deviation values less than 5.7%. As a result of the inter-laboratory validation, the average recoveries between the two laboratories were 88.6~101.4% and the coefficient of variation was also below 15%. All optimized results were satisfied the criteria ranges requested in the Codex guidelines and Food Safety Evaluation Department guidelines. This study could serve as a reference for safety management relative to fenpropimorph residues in imported and domestic agricultural products.

Development and Validation of an Analytical Method for Fungicide Fluoxastrobin Determination in Agricultural Products (농산물 중 살균제 Fluoxastrobin의 시험법 개발 및 유효성 검증)

  • So Eun, Lee;Su Jung, Lee;Sun Young, Gu;Chae Young, Park;Hye-Sun, Shin;Sung Eun, Kang;Jung Mi, Lee;Yun Mi, Chung;Gui Hyun, Jang;Guiim, Moon
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.6
    • /
    • pp.373-384
    • /
    • 2022
  • Fluoxastrobin a fungicide developed from Strobilurus species mushroom extracts, can be used as an effective pesticide to control fungal diseases. In this study, we optimized the extraction and purification of fluoxastrobin according to its physical and chemical properties using the QuEChERS method and developed an LC-MS/MS-based analysis method. For extraction, we used acetonitrile as the extraction solvent, along with MgSO4 and PSA. The limit of quantitation of fluoxastrobin was 0.01 mg/kg. We used 0.01, 0.1, and 0.5 mg/kg of five representative agricultural products and treated them with fluoxastrobin. The coefficients of determination (R2) of fluoxastrobin and fluoxastrobin Z isomer were > 0.998. The average recovery rates of fluoxastrobin (n=5) and fluoxastrobin Z isomer were 75.5-100.3% and 75.0-103.9%, respectively. The relative standard deviations (RSDs) were < 5.5% and < 4.3% for fluoxastrobin and fluoxastrobin Z isomer, respectively. We also performed an interlaboratory validation at Gwangju Regional Food and Drug Administration and compared the recovery rates and RSDs obtained for fluoxastrobin and fluoxastrobin Z isomer at the external lab with our results to validate our analysis method. In the external lab, the average recovery rates and RSDs of fluoxastrobin and fluoxastrobin Z isomer at each concentration were 79.5-100.5% and 78.8-104.7% and < 18.1% and < 10.2%, respectively. In all treatment groups, the concentrations were less than those described by the 'Codex Alimentarius Commission' and the 'Standard procedure for preparing test methods for food, etc.'. Therefore, fluoxastrobin is safe for use as a pesticide.

Development and Validation of an Analytical Method for Tridemorph Determination in Tea Samples by Liquid Chromatograph-Electrospray Ionization-Tandem Mass Spectrometry

  • Do, Jung-Ah;Park, Hyejin;Kwon, Ji-Eun;Cho, Yoon-Jae;Chang, Moon-Ik;Oh, Jae-Ho;Hwang, In-Gyun
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.4
    • /
    • pp.292-298
    • /
    • 2014
  • Tridemorph is a systemic morpholine fungicide for crops. The objective of this study was to develop reliable and sensitive analytical method for determination of tridemorph residues in tea samples for ensuring the food safety. Tridemorph residues in samples were extracted with acetonitrile after hydration, partitioned with saline water, and then purified using an aminopropyl ($NH_2$) SPE cartridge. The purified samples were detected and quantified using LC-ESI-MS/MS. The linear detection limits for tridemorph ranged from 0.02 to $1.0mgL^{-1}$ with a correlation coefficient of 0.9999. The method was validated using tea samples spiked with tridemorph at different concentration levels (0.02 and $0.05{\mu}gmL^{-1}$). The average recovery ranged between 75.0 and 84.7% with relative standard deviations less than 10%. The LOD and LOQ were 0.01 and $0.02mgL^{-1}$, respectively. The developed method was applied successfully to the identification of tridemorph in real tea samples obtained from different sources, and tridemorph was not detected in any of the samples. The results show that the developed analytical method is accurate and suitable for tridemorph determination in tea samples.

Determination of Oxycarboxin Residues in Agricultural Commodities Using HPLC-UVD/MS (HPLC-UVD/MS를 이용한 농산물 중 Oxycarboxin의 분석)

  • Choung, Myoung-Gun
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.2
    • /
    • pp.117-124
    • /
    • 2018
  • BACKGROUND: Oxycarboxin(5,6-dihydro-2-methyl-N-phenyl-1,4-oxathiin-3-carboxamide-4,4-dioxide) as oxanthiin is a systemic fungicide commonly used for control of various pathogens in agronomic and horticultural crops. In an effort to develop an analytical method to trace the fungicide, a method using HPLC equipped with UVD/MS was studied. METHODS AND RESULTS: Oxycarboxin was extracted with acetone from hulled rice, soybean, Kimchi cabbage, green pepper, and apple samples. The extract was diluted with saline water, followed by liquid-liquid extraction with methylene chloride. Florisil column chromatography was employed for the purification of the extracts. Oxycarboxin was determined on a Zorbax SB-AQ $C_{18}$ column by HPLC with UVD. Accuracy of the proposed method was validated by the recovery tests from crop samples fortified with oxycarboxin at 3 levels per crop. CONCLUSION: Mean recoveries ranged from 78.3% to 96.1% in five representative agricultural commodities. The coefficients of variation were less than 10%, and limit of quantitation of oxycarboxin was 0.04 mg/kg. A confirmatory technique using LC/MS with selected-ion monitoring was also provided to clearly identify the suspected residue. The method was reproducible and sensitive to determine the residue of oxycarboxin in agricultural commodities.

Rainfastness of Two Fungicides Tank-mixed with Spreader-sticker (전착제를 혼용한 2 종 살균제의 내우성)

  • Choi, Yun-Kyong;Yu, Ju-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.4
    • /
    • pp.203-208
    • /
    • 2009
  • In order to elucidate the effect of spreader-stickers on the rainfastness of dithianon and chlorothalonil wettable powders, and to estimate the possibility of suggesting good new formulations, the fungicide residues on the leaf surface of hot pepper was assessed and compared after the drop-wise applications of fungicide suspensions containing spreader-sticker on leaf surface followed by artificial raining. Three commercial spreader-stickers, which were Cover, Reitron and Silwet, not only made the rainfastness of dithianon wettable powders worse on hot pepper leaf, but increasing their concentrations also accelerated it further. On the other hand, to chlorothalonil wettable powder, Reitron showed the 3-fold improvement of rainfastness. But, for the rest, there was no improvement as well. The effect of N-octylpyrrolidone (NOP) on rainfastness of both fungicides was excellent. Soybean oil formulations containing leaf-penetrable nonionic surfactant, which was either polyoxyethylene monotridecyl ether or polyoxyethylene monolauryl ether, improved dithianon rainfastness, but the ones containing conventional emulsifiers did not.

Synergistic Interactions of Schizostatin Identified from Schizophyllum commune with Demethylation Inhibitor Fungicides

  • Park, Min Young;Jeon, Byeong Jun;Kang, Ji Eun;Kim, Beom Seok
    • The Plant Pathology Journal
    • /
    • v.36 no.6
    • /
    • pp.579-590
    • /
    • 2020
  • Botrytis cinerea, which causes gray mold disease in more than 200 plant species, is an economically important pathogen that is mainly controlled by synthetic fungicides. Synergistic fungicide mixtures can help reduce fungicide residues in the environment and mitigate the development of fungicide-resistant strains. In this study, we screened microbial culture extracts on Botrytis cinerea to identify an antifungal synergist for tebuconazole. Among the 4,006 microbial extracts screened in this study, the culture extract from Schizophyllum commune displayed the most enhanced activity with a sub-lethal dosage of tebuconazole, and the active ingredient was identified as schizostatin. In combination with 5 ㎍/ml tebuconazole, schizostatin (1 ㎍/ml) showed disease control efficacy against gray mold on tomato leaf similar to that achieved with 20 ㎍/ml tebuconazole treatment alone. Interestingly, schizostatin showed demethylation inhibitor (DMI)-specific synergistic interactions in the crossed-paper strip assay using commercial fungicides. In a checkerboard assay with schizostatin and DMIs, the fractional inhibitory concentration values were 0.0938-0.375. To assess the molecular mechanisms underlying this synergism, the transcription levels of the ergosterol biosynthetic genes were observed in response to DMIs, schizostatin, and their mixtures. Treatment with DMIs increased the erg11 (the target gene of DMI fungicides) expression level 15.4-56.6-fold. However, treatment with a mixture of schizostatin and DMIs evidently reverted erg11 transcription levels to the pre-DMI treatment levels. These results show the potential of schizostatin as a natural antifungal synergist that can reduce the dose of DMIs applied in the field without compromising the disease control efficacy of the fungicides.

Residue Monitoring and Dietary Risk Evaluation of Fungicide Propiconazole in Leafy Vegetables under Greenhouse Conditions

  • Lawal Abdulkareem;Ji-Eun Oh;Se-Yeon Kwak;Sang-Hyeob Lee;Jae-Won Choi;Aniruddha Sarker;Kee Sung Kyung;Tae Hwa Kim;Jang-Eok Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.3
    • /
    • pp.193-202
    • /
    • 2023
  • Residue monitoring of propiconazole (PCZ) in cabbage, shallot, and spinach was conducted under multi-trial greenhouse conditions. This study aimed to understand the fate of the applied fungicide in these vegetables. Furthermore, the associated health risk of PCZ in leafy vegetables was assessed through dietary risk assessment. Commercially available PCZ (22% suspension concentrate) was administered thrice according to the OECD fungicide application interval guideline. The plant samples were extracted using a slightly modified QuEChERS technique and analyzed using gas chromatography-tandem mass spectrometry. The average PCZ recovery was between 84.5% and 117.6%, with a <5% coefficient of variance. The dissipation of PCZ residue in cabbage, shallot, and spinach after 14 days was 96%, 90%, and 99%, respectively, with half-lives of <5 days. Meanwhile, dietary risk assessments of PCZ residues in the studied vegetables using the risk quotient (RQ) were significant < 100 (RQ < 100). Thus, the population groups considered in this study were not at substantial risk from consuming leafy vegetables sprayed with PCZ following critical, good agricultural practices.