DOI QR코드

DOI QR Code

Residue Monitoring and Dietary Risk Evaluation of Fungicide Propiconazole in Leafy Vegetables under Greenhouse Conditions

  • Lawal Abdulkareem (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Ji-Eun Oh (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Se-Yeon Kwak (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Sang-Hyeob Lee (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Jae-Won Choi (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Aniruddha Sarker (Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kee Sung Kyung (Department of Environmental and Biological Chemistry, College of Agriculture, Life and Environment Science, Chungbuk National University) ;
  • Tae Hwa Kim (Analysis Technology and Tomorrow, Ltd.) ;
  • Jang-Eok Kim (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University)
  • 투고 : 2023.07.19
  • 심사 : 2023.08.29
  • 발행 : 2023.09.30

초록

Residue monitoring of propiconazole (PCZ) in cabbage, shallot, and spinach was conducted under multi-trial greenhouse conditions. This study aimed to understand the fate of the applied fungicide in these vegetables. Furthermore, the associated health risk of PCZ in leafy vegetables was assessed through dietary risk assessment. Commercially available PCZ (22% suspension concentrate) was administered thrice according to the OECD fungicide application interval guideline. The plant samples were extracted using a slightly modified QuEChERS technique and analyzed using gas chromatography-tandem mass spectrometry. The average PCZ recovery was between 84.5% and 117.6%, with a <5% coefficient of variance. The dissipation of PCZ residue in cabbage, shallot, and spinach after 14 days was 96%, 90%, and 99%, respectively, with half-lives of <5 days. Meanwhile, dietary risk assessments of PCZ residues in the studied vegetables using the risk quotient (RQ) were significant < 100 (RQ < 100). Thus, the population groups considered in this study were not at substantial risk from consuming leafy vegetables sprayed with PCZ following critical, good agricultural practices.

키워드

과제정보

This research was supported by 2022 research funds from the Kyungpook National University and Ministry of Food and Drug Safety, Republic of Korea.

참고문헌

  1. Sardar SW, Byeon GD, Choi JY, Ham HJ, Ishag AESA, Hur JH (2022) Residual characteristics and safety assessment of the insecticides spiromesifen and chromafenozide in lettuce and perilla. Scientific Reports, 12(1), 4675. https://doi.org/10.1038/s41598-022-08532-2.
  2. Yi YJ, Joung HJ, Kum JY, Hwang IS, Kim MS (2020) Pesticide residues in vegetables and risk assessment for consumers in Korea during 2010-2014. Food Additives & Contaminants: Part A, 37(8), 1300-1313. https://doi.org/10.1080/19440049.2020.1769198.
  3. Hwang JI, Kim HY, Lee SH, Kwak SY, Zimmerman AR, Kim JE (2018) Improved dissipation kinetic model to estimate permissible pre-harvest residue levels of pesticides in apples. Environmental Monitoring and Assessment, 190, 1-11. https://doi.org/10.1007/s10661-018-6819-8.
  4. Soliman AS, Helmy RM, Nasr IN, Abbas MS, Mahmoud HA, Jiang W (2017) Behavior of thiophanate methyl and propiconazole in grape and mango fruits under the egyptian field conditions. Bulletin of Environmental Contamination and Toxicology, 98, 720-725. https://doi.org/10.1007/s00128-017-2066-x.
  5. Wang C, Wang Y, Wang R, Yan J, Lv Y, Li A, Gao J (2017) Dissipation kinetics, residues and risk assessment of propiconazole and azoxystrobin in ginseng and soil. International Journal of Environmental Analytical Chemistry, 97(1), 1-13. https://doi.org/10.1080/03067319.2016.1272678.
  6. Li KL, Chen WY, Zhang M, Luo XW, Liu Y, Zhang DY, Chen A (2022) Monitoring residue levels and dietary risk assessment of thiamethoxam and its metabolite clothianidin for Chinese consumption of Chinese kale. Journal of the Science of Food and Agriculture, 102(1), 417-424. https://doi.org/10.1002/jsfa.11371.
  7. Satapute P, Kamble MV, Adhikari SS, Jogaiah S (2019) Influence of triazole pesticides on tillage soil microbial populations and metabolic changes. Science of the Total Environment, 651, 2334-2344. https://doi.org/10.1016/j.scitotenv.2018.10.099.
  8. Tang S, Meng X, Wang F, Lin Q, Feng T, Hu D, Zhang Y (2022) Four propiconazole stereoisomers: Stereoselective bioactivity, separation via liquid chromatography-tandem mass spectrometry, and dissipation in banana leaves. Journal of Agricultural and Food Chemistry, 70(3), 877-886. https://doi.org/10.1021/acs.jafc.1c06253.
  9. Hamed SM, Al-Nuaemi IJ, Korany SM, Alsherif EA, Mohamed HS, Abdelgawad H (2022) Hazard assessment and environmental fate of propiconazole degradation by microalgae: Differential tolerance, antioxidant and detoxification pathway. Journal of Environmental Chemical Engineering, 10(4), 108170. https://doi.org/10.1016/j.jece.2022.108170.
  10. Li J, Ding Y, Chen H, Sun W, Huang Y, Liu F, Wang M, Hua X (2022) Development of an indirect competitive enzyme-linked immunosorbent assay for propiconazole based on monoclonal antibody. Food Control, 134, 108751. https://doi.org/10.1016/j.foodcont.2021.108751.
  11. Abdallah OI, Alrasheed AM, Al-Mundarij AA, Omar AF, Alhewairini SS, Al-Jamhan KA (2021) Levels of residues and dietary risk assessment of the fungicides myclobutanil, penconazole, tebuconazole, and triadimenol in squash. Biomedical Chromatography, 35(8), e5126. https://doi.org/10.1002/bmc.5126.
  12. Zhang Z, Jiang W, Jian Q, Song W, Zheng Z, Wang D, Liu X (2015) Residues and dissipation kinetics of triazole fungicides difenoconazole and propiconazole in wheat and soil in Chinese fields. Food Chemistry, 168, 396-403. https://doi.org/10.1016/j.foodchem.2014.07.087.
  13. Jeong JY, Kim B, Ji SY, Baek YC, Kim M, Park SH, Kim KH, Oh SI, Kim EJ, Jung HJ (2021) Effect of pesticide residue in muscle and fat tissue of pigs treated with propiconazole. Food Science of Animal Resources, 41(6), 1022. https://doi.org/10.5851/kosfa.2021.e533.
  14. Lee SH, Kwak SY, Sarker A, Moon JK, Kim JE (2022) Optimization of a multi-residue analytical method during determination of pesticides in meat products by GC-MS/MS. Foods, 11(19), 2930. https://doi.org/10.3390/foods11192930.
  15. Sarker A, Lee SH, Kwak SY, Nam AJ, Kim HJ, Kim JE (2020) Residue monitoring and risk assessment of cyazofamid and its metabolite in Korean cabbage under greenhouse conditions. Bulletin of Environmental Contamination and Toxicology, 105, 595-601. https://doi.org/10.1007/s00128-020-02972-0.
  16. Bai A, Chen A, Chen W, Luo X, Liu S, Zhang M, Liu Y, Zhang D (2021) Study on degradation behaviour, residue distribution, and dietary risk assessment of propiconazole in celery and onion under field application. Journal of the Science of Food and Agriculture, 101(5), 1998-2005. https://doi.org/10.1002/jsfa.10817.
  17. Nandi R, Kwak SY, Lee SH, Sarker A, Kim HJ, Lee DJ, Heo YJ, Kyung KS, Kim JE (2022) Dissipation characteristics of spirotetramat and its metabolites in two phenotypically different Korean vegetables under greenhouse conditions. Food Additives & Contaminants: Part A, 39(5), 964-976. https://doi.org/10.1080/19440049.2022.2046293.
  18. Wu S, Zhang H, Zheng K, Meng B, Wang F, Cui Y, Zeng S, Zhang K, Hu D (2018) Simultaneous determination and method validation of difenoconazole, propiconazole and pyraclostrobin in pepper and soil by LC-MS/MS in field trial samples from three provinces, China. Biomedical Chromatography, 32(2), e4052. https://doi.org/10.1002/bmc.4052.
  19. Opolot M, Lee SH, Kwak SY, Sarker A, Cho SC, Kim HJ, Jeong HR, Kim JE (2018) Dissipation patterns of insecticide sulfoxaflor in spinach and Korean cabbage. The Korean Journal of Pesticide Science, 22(4), 316-326. https://doi.org/10.7585/kjps.2018.22.4.316.
  20. Tankiewicz M, Berg A (2022) Improvement of the QuEChERS method coupled with GC-MS/MS for the determination of pesticide residues in fresh fruit and vegetables. Microchemical Journal, 181, 107794. https://doi.org/10.1016/J.MICROC.2022.107794.
  21. Cheng Y, Zheng Y, Dong F, Li J, Zhang Y, Sun S, Li N, Cui X, Wang Y, Pan X, Zhang W (2017) Stereo-selective analysis and dissipation of propiconazole in wheat, grapes, and soil by supercritical fluid chromatography-tandem mass spectrometry. Journal of Agricultural and Food Chemistry, 65(1), 234-243. https://doi.org/10.1021/acs.jafc.6b04623
  22. Mohapatra S (2016) Dynamics of difenoconazole and propiconazole residues on pomegranate over 2 years under field conditions. Environmental Science and Pollution Research, 23, 5795-5806. https://doi.org/10.1007/s11356-015-5785-8.
  23. Wayment DG, Ledet HJ, Torres KA, White PM (2021) Soil dissipation of sugarcane billet seed treatment fungicides and insecticide using QuEChERS and HPLC. Journal of Environmental Science and Health, Part B, 56(2), 188-196. https://doi.org/10.1080/03601234.2020.1858685.
  24. Munitz MS, Medina MB, Montti MIT (2017) Development and validation of an SPME-GC method for a degradation kinetics study of propiconazole I, propiconazole II and tebuconazole in blueberries in Concordia, the main production area of Argentina. Food Additives & Contaminants: Part A, 34(5), 793-799. https://doi.org/10.1080/19440049.2017.1301682.
  25. Fantke P, Juraske R (2013) Variability of pesticide dissipation half-lives in plants. Environmental Science & Technology, 47(8), 3548-3562. https://doi.org/10.1021/es303525x.
  26. Klink H, Verreet JA, Hasler M, Birr T (2021) Will triazoles still be of importance in disease control of Zymoseptoria tritici in the future?. Agronomy, 11(5), 933. https://doi.org/10.3390/agronomy11050933.
  27. Kwak SY, Lee SH, Jeong HR, Nam AJ, Sarker A, Kim HY, Lim CU, Cho HJ, Kim JE (2019) Variation of pesticide residues in strawberries by washing and boiling processes. Korean Journal of Environmental Agriculture, 38(4), 281-290. https://doi.org/10.5338/kjea.2019.38.4.38.
  28. Kwak SY, Lee SH, Sarker A, Kim HY, Shin BG, Kim JE (2021) Uptake and carry-over of procymidone residues to non-target succeeding crop from applied on preceding crop. Korean Journal of Environmental Agriculture, 40(3), 203-210. https://doi.org/10.5338/kjea.2021.40.3.24.
  29. Xu J, Long X, Ge S, Li M, Chen L, Hu D, Zhang Y (2019) Deposition amount and dissipation kinetics of difenoconazole and propiconazole applied on banana with two commercial spray adjuvants. RSC Advances, 9(34), 19780-19790. https://doi.org/10.1039/c9ra02874a.
  30. Heo YJ, Kwak SY, Sarker A, Lee SH, Choi JW, Oh JE, Abdulkareem L, Kim JE (2023) Uptake and translocation of fungicide picarbutrazox in greenhouse cabbage: The significance of translocation factors and home processing. Environmental Science and Pollution Research, 30(14), 40919-40930. https://doi.org/10.1007/s11356-022-25087-x.
  31. Hwang KW, Bang WS, Jo HW, Moon JK (2015) Dissipation and removal of the etofenprox residue during processing in spring onion. Journal of Agricultural and Food Chemistry, 63(30), 6675-6680. https://doi.org/10.1021/acs.jafc.5b02345.
  32. Sarker A, Nandi R, Kim JE, Islam T (2021) Remediation of chemical pesticides from contaminated sites through potential microorganisms and their functional enzymes: Prospects and challenges. Environmental Technology & Innovation, 23, 101777. https://doi.org/10.1016/J.ETI.2021.101777.
  33. Alcantara DB, Fernandes TSM, Nascimento HO, Lopes AF, Menezes MGG, Lima ACA, Carvalho TV, Grinberg P, Milhome MAL, Oliveira AHB, Becker H, Zocolo GJ, Nascimento RF (2019) Diagnostic detection systems and QuEChERS methods for multiclass pesticide analyses in different types of fruits: An overview from the last decade. Food Chemistry, 298, 124958. https://doi.org/10.1016/j.foodchem.2019.124958.
  34. Chen B, Shen X, Li Z, Wang J, Li X, Xu Z, Shen Y, Lei Y, Huang X, Wang X, Lei H (2022) Antibody generation and rapid immunochromatography using time-resolved fluorescence microspheres for propiconazole: Fungicide abused as growth regulator in vegetable. Foods, 11(3), 324. https://doi.org/10.3390/foods11030324.
  35. Liu S, Huang X, He H, Jin Q, Zhu G (2016) Evaluation of selected plant growth regulators and fungicide residues in fruits for dietary risk assessment. Human and Ecological Risk Assessment: An International Journal, 22(6), 1386-1395. https://doi.org/10.1080/10807039.2016.1185357.