• Title/Summary/Keyword: Fungal metabolite

Search Result 75, Processing Time 0.019 seconds

Synthesis and Biological Activity of Fungal Metabolite, 4-Hydroxy-3-(3'-Methyl-2'-Butenyl)-Benzoic Acid

  • Kim, Hye-Jin;Kwon, Ho-Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.543-545
    • /
    • 2007
  • 4-Hydroxy-3-(3'-methyl-2'-butenyl)-benzoic acid (HMBA) was previously isolated from Curvularia sp. KF119 as a cell-cycle inhibitor. However, the present study used a novel and practical synthetic method to prepare a large quantity of HMBA. The synthetic HMBA was found to inhibit the cell-cycle progression of HeLa cells with a comparable potency to the natural fungal metabolite. The inhibition of the cell-cycle progression by the synthetic HMBA involved both the activation of $p21^{WAF1}$ and the inhibition of cyclin D1 expression in the cells. Consequently, this new synthetic procedure provides an easy and convenient way to produce or manipulate the original fungal metabolite.

Cyclo(Dehydrohistidyl-L-Tryptophyl), an Inhibitor of Nitric Oxide Production from a Fungal Strain, Fb956

  • Noh, Hyun-Jeong;Sohn, Mi-Jin;Yu, Hyung-Eun;Yoo, Ick-Dong;Kim, Won-Gon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1717-1720
    • /
    • 2007
  • In the course of screening for nitric oxide inhibitors in activated microglial BV-2 cells, cyclo(dehydrohistidyl-L-tryptophyl) was isolated from solid-state fermentation cultures of an unidentified fungal strain, Fb956. Its structure was determined by spectroscopic methods including 2D NMR and chiral TLC analyses. Cyclo(dehydrohistidyl-L-tryptophyl) was found to have an inhibitory activity on nitric oxide production with an $IC_{50}$ of $6.5\;{\mu}M$ in activated BV-2 cells. The structure determination and biological activity of cyclo(dehydrohistidyl-L-tryptophyl) was reported for the first time in this study.

Production of Citrate by Anaerobic Fungi in the Presence of Co-culture Methanogens as Revealed by 1H NMR Spectrometry

  • Cheng, Yan Fen;Jin, Wei;Mao, Sheng Yong;Zhu, Wei-Yun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.10
    • /
    • pp.1416-1423
    • /
    • 2013
  • The metabolomic profile of the anaerobic fungus Piromyces sp. F1, isolated from the rumen of goats, and how this is affected by the presence of naturally associated methanogens, was analyzed by nuclear magnetic resonance spectroscopy. The major metabolites in the fungal monoculture were formate, lactate, ethanol, acetate, succinate, sugars/amino acids and ${\alpha}$-ketoglutarate, whereas the co-cultures of anaerobic fungi and associated methanogens produced citrate. This is the first report of citrate as a major metabolite of anaerobic fungi. Univariate analysis showed that the mean values of formate, lactate, ethanol, citrate, succinate and acetate in co-cultures were significantly higher than those in the fungal monoculture, while the mean values of glucose and ${\alpha}$-ketoglutarate were significantly reduced in co-cultures. Unsupervised principal components analysis revealed separation of metabolite profiles of the fungal mono-culture and co-cultures. In conclusion, the novel finding of citrate as one of the major metabolites of anaerobic fungi associated with methanogens may suggest a new yet to be identified pathway exists in co-culture. Anaerobic fungal metabolism was shifted by associated methanogens, indicating that anaerobic fungi are important providers of substrates for methanogens in the rumen and thus play a key role in ruminal methanogenesis.

Mevinolin Production by Monascus pilosus IFO 480 in Solid State Fermentation of Soymeal

  • Pyo, Young-Hee;Lee, Young-Chul
    • Food Science and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.647-649
    • /
    • 2006
  • Mevinolin, a fungal metabolite, is a potent inhibitor of 3-hydroxy-methyl-3-glutaryl-coenzyme A (HMG-CoA) reductase, the rate-controlling enzyme in cholesterol biosynthesis. In this investigation, the optimum factors for mevinolin production by Monascus pilosus IFO 480 in soymeal fermentation were studied. The highest yield of mevinolin, 2.82 mg mevinolin per g dry weight, without citrinin (a toxic fungal secondary metabolite) was obtained after 21 days of fermentation at $30^{\circ}C$ at 65% moisture content, particle size 0.6-0.9 mm, and initial substrate pH of 6.0. Mevinolin was present in the fermentation substrate predominantly in the hydroxycarboxylate form (open lactone, 92.1-97.3%), which is currently being used as a hypocholesterolemic agent.

Promotion of Tricholoma matsutake mycelium growth by Penicillium citreonigrum

  • Doo-Ho Choi;Jae-Gu Han;Kang-Hyo Lee;An Gi-Hong
    • Mycobiology
    • /
    • v.51 no.5
    • /
    • pp.354-359
    • /
    • 2023
  • Tricholoma matsutake has been the most valuable ectomycorrhizal fungi in Asia because of its unique flavor and taste. However, due to the difficulty of artificial cultivation, the cultivation of T. matsutake has relied on natural growth in forests. To cultivate the T. matsutake artificially, microorganisms in fairy rings were introduced. In this study, we isolated 30 fungal species of microfungi from the soil of fairy rings. Among them, one single fungal strain showed a promoting effect on the growth of T. matsutake. The growth effect was confirmed by measuring the growth area of T. matsutake and enzyme activities including a-amylase, cellulase, and b-glucosidase. In comparison with control, microfungal metabolite increased the growth area of T. matsutake by 213% and the enzyme activity of T. matsutake by 110-200%. The isolated fungal strain was identified as Penicillium citreonigrum by BLAST on the NCBI database. The Discovery of this microfungal strain is expected to contribute to artificial cultivation of T. matsutake.

Anti-fungal materials Produced by Streptomyces albogriseus Isolated in Korean soil

  • Kwon, Hyuk-Ku;Kang, Byeong-Kon;Lee, Jang-Hoon
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2004.06a
    • /
    • pp.165-168
    • /
    • 2004
  • An anti-fungal material producing actinomycete was isolated from domestic soil. This strain was identified as Streptomyces albogriseus by 16S rDNA sequence. YEME (yeast extract 4g, malt extract 10g, glucose 4g, D.W 1l , pH $7.0{\pm}0.2$) medium was used for production of anti-fungal materials. S. albogriseus was cultured in a shaking incubator for 2 weeks at 150 rpm and $25{\pm}1^{\circ}C$. An anti-fungal material produced by S. albogriseus was identified at 340nm by uv/vis- spectrometer and it showed powerful anti-fungal activity. This is the first report that secondary metabolite produced by S. albogriseus showed an activity against phytopathogenic fungi such as Collectrichum coccodes, Botrytis cinerea, Cladosporium cucumerinum, Didymella bryoniae.

  • PDF

A CRISPR/Cas9 Cleavage System for Capturing Fungal Secondary Metabolite Gene Clusters

  • Xu, Xinran;Feng, Jin;Zhang, Peng;Fan, Jie;Yin, Wen-Bing
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.8-15
    • /
    • 2021
  • More and more available fungal genome sequence data reveal a large amount of secondary metabolite (SM) biosynthetic 'dark matter' to be discovered. Heterogeneous expression is one of the most effective approaches to exploit these novel natural products, but it is limited by having to clone entire biosynthetic gene clusters (BGCs) without errors. So far, few effective technologies have been developed to manipulate the specific large DNA fragments in filamentous fungi. Here, we developed a fungal BGC-capturing system based on CRISPR/Cas9 cleavage in vitro. In our system, Cas9 protein was purified and CRISPR guide sequences in combination with in vivo yeast assembly were rationally designed. Using targeted cleavages of plasmid DNAs with linear (8.5 kb) or circular (8.5 kb and 28 kb) states, we were able to cleave the plasmids precisely, demonstrating the high efficiency of this system. Furthermore, we successfully captured the entire Nrc gene cluster from the genomic DNA of Neosartorya fischeri. Our results provide an easy and efficient approach to manipulate fungal genomic DNA based on the in vitro application of Cas9 endonuclease. Our methodology will lay a foundation for capturing entire groups of BGCs in filamentous fungi and accelerate fungal SMs mining.

In Vitro Bactericidal and Anticancer Activity of New Metabolite, ARK42, Isolated from Aspergillus repens K42

  • Park, Je-Won;Song, Beom-Seok;Ryu, Do-Jin;Lee, Chan;Kim, Young-Bae
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.1017-1021
    • /
    • 2002
  • A novel antibacterial metabolite, ARK42, was elated from a xerophilic fungal strain K42, and Identified as Aspergillus repens based on its morphological characteristics. The metabolite exhibited antibacterial activities towards Staphylococcus aureus, Bacillus cereus, and Pseudomonas aeruginosa, with MICs of 25, 12.5, and $3.125{\mu}g/ml$, respectively, and killed Pseudomonas aeruginosa with minimal bactericidal concentration (MBC) of $12.5{\mu}g/ml$. Furthermore, anticancer activities were demonstrated against human colon cancer DLD- 1 and lung cancer LXFL529 cells with an $IC_50$ of 10 and $1{\mu}g/ml$, respectively.

Metabolite Profiling and Microbial Community of Traditional Meju Show Primary and Secondary Metabolite Differences Correlated with Antioxidant Activities

  • Song, Da Hye;Chun, Byung Hee;Lee, Sunmin;Reddy, Chagam Koteswara;Jeon, Che Ok;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1697-1705
    • /
    • 2020
  • Meju, a type of fermented soybean paste, is used as a starter in the preparation of various Korean traditional soybean-based foods. In this study, we performed Illumina-MiSeq paired-end sequencing for microbial communities and mass spectrometry analysis for metabolite profiling to investigate the differences between 11 traditional meju products from different regions across Korea. Even though the bacterial and fungal communities showed remarkable variety, major genera including Bacillus, Enterococcus, Variovorax, Pediococcus, Weissella, and Aspergillus were detected in every sample of meju. The metabolite profile patterns of the 11 samples were clustered into two main groups: group I (M1-5) and group II (M6-11). The metabolite analysis indicated a relatively higher amino acid content in group I, while group II exhibited higher isoflavone, soyasaponin, and lysophospholipid contents. The bioactivity analysis proved that the ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) radical-scavenging activity was higher in group II and the FRAP (ferric reducing antioxidant power) activity was higher in group I. The correlation analysis revealed that the ABTS activity was isoflavonoid, lipid, and soyasaponin related, whereas the FRAP activity was amino acid and flavonoid related. These results suggest that the antioxidant activities of meju are critically influenced by the microbiome and metabolite dynamics.

Isolation and Identification of Activated Microorganisms for Biocide Development (생물농약개발을 위한 활성미생물의 분리동정에 관한 연구)

  • Lee, Jang-Hoon;Kang, Byeong-Kon;Kwon, Hyuk-Ku;Jung, Joon-Oh;Nam, Youn-Ku
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.1
    • /
    • pp.31-38
    • /
    • 2005
  • An anti-fungal material produced by actinomycetes was isolated from domestic soil. This actinomycetes was identified as Streptomyces albogriseus by 16S rDNA sequence. YEME (yeast extract 4 g, malt extract 10 g, glucose 4 g, D.W 1l, pH 7.00.2) medium was used for production of anti-fungal materials. S. albogriseus was cultured in a shaking incubator for 2 weeks at 150 rpm and $25^{\circ}C$. An anti-fungal material produced by S. albogriseus was identified at 340 nm by uv/vis- spectrometer and it showed powerful anti-fungal activity. This is the first report that secondary metabolite produced by S. albogriseus showed an activity against phytopathogenic fungi such as Collectrichum coccodes, Botrytis cinerea, Cladosporium cucumerinum, Didymella bryoniae.