• Title/Summary/Keyword: Fungal Concentration

Search Result 332, Processing Time 0.035 seconds

Characterization of Acidic Carboxymethylcellulase Produced by a Marine Microorganism, Psychrobacter aquimaris LBH-10 (해양미생물 Psychrobacter aquimaris LBH-10가 생산하는 산성 carboxymethylcellulase의 특성에 대한 연구)

  • Kim, Hye-Jin;Gao, Wa;Lee, You-Jung;Chung, Chung-Han;Lee, Jin-Woo
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.487-495
    • /
    • 2010
  • A microorganism hydrolyzing carboxymethylcellulose (CMC) was isolated from seawater, identified as Psychrobacter aquimaris by analysis of 16S rDNA sequences, and named P. aquimari LBH-10. This strain produced an acidic carboxymethylcellulase (CMCase), which hydrolyzed carboxymethylcellulose (CMC), cellobiose, curdlan, filter paper, p-nitrophenyl-$\beta$-D-glucopyranoside (pNPG), pullulan, and xylan, but there was no detectable activity on avicel and cellulose. The optimal temperature for CMCase produced by P. aquimari LBH-10 was $50^{\circ}C$ and more than 90% of its original activity was maintained at broad temperatures ranging from 20 to $50^{\circ}C$ after 24 hr. The optimal pH of the CMCase was 3.5, and more than 70% of its original activity was maintained under acidic conditions between pH 2.5 and 7.0 at $50^{\circ}C$ after 24 hr. The optimal pH of CMCase produced by P. aquimaris LBH-10 seems to be lower than those produced by any other bacterial and fungal strain. $CoCl_2$, EDTA, and $PbCl_2$ at a concentration of 0.1 M enhanced CMCase-produced P. aquimaris LBH-10, whereas $HgCl_2$, KCl, $MnCl_2$, $NiCl_2$, and $SrCl_2$ inhibited it.

Screening of Antifungal Activities of Medicinal Plants for the Control of Turfgrass Fungal Disease (잔디 병해 방제를 위한 약용식물의 항균작용 탐색)

  • Kang, Jae Young;Kim, Dae Ho;Lee, Dong Gu;Kim, In Seob;Jeon, Min Goo;Lee, Jae Deuk;Kim, Ik Hwi;Lee, Sanghyun
    • Weed & Turfgrass Science
    • /
    • v.2 no.1
    • /
    • pp.70-75
    • /
    • 2013
  • Seven medicinal plant extracts were tested for antifungal activities against six species of the major turfgrass pathogenic fungi (Colletotrichum graminicola, Pythium spp., Rhizoctonia cerealis, Rhizoctonia solani AG1-1, Rhizoctonia solani AG2-2, and Sclerotinia homoeocarpa) using paper disk diffusion method. Three medicinal plant extracts, including Pinus densiflora showed antifungal activities. In suppression of mycelium growth test, on medium adding P. densiflora extract showed that inhibition rate of mycelium growth were above 80% in 10 mg/10 ml concentration of the extract. The inhibition rate of Pythium spp. was 100% and C. graminicola was 84.3% in 10 mg/10 ml concentrations of P. densiflora extract, respectively. In particularly, the inhibition rate of Pythium spp. was 89.5% in 2 mg/10 ml concentrations of P. densiflora extract. As a result, P. densiflora extract showed high antifungal activity to Pythium spp. and C. graminicola of the turfgrass pathogen in in vitro test.

Sensitivity to Sterol Biosynthesis Inhibitors of Colletotrichum gloeosporioides Isolated from Persimmon in 2013 in Sangju, Gyeongsangbukdo (2013년 경북 상주지역 감나무로부터 분리한 Colletotrichum gloeosporioides 탄저병균의 스테롤 생합성 저해 살균제에 대한 감수성)

  • Lim, Tae Heon;Lee, Dong Woon;Kwon, Oh Gyeong;Han, Sangsub;Cha, Byeongjin;Song, In Kyu
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.272-278
    • /
    • 2015
  • Colletotrichum gloeosporioides is one of the most serious pathogens of persimmon in Korea. In 2013, 67 isolates of C. gloeosporioides were isolated from infected fruits, leaf and twigs of persimmon (Diosprosi kaki) at Sangju, Gyeongsangbukdo and fungal responses against five fungicides (prochloraz manganese complex, tebuconazole, mancozeb+myclobutanil, fluquinconazole+prochloraz, and tebuconazole+tolyfluanid) were evaluated by their growth on the fungicide-medium. All isolates were inhibited mycelium growth on the medium with each recommended application concentration of flied. $EC_{50}$ (${\mu}g/ml$) of tebuconazole was from 0.02 to 1.04 and average was 0.31. $EC_{50}$ (${\mu}g/ml$) of prochloraz manganese complex was 0.02~0.23 average was 0.078. Average $EC_{50}$ values (${\mu}g/ml$) of Fluquinconazole+Prochloraz (FP) was 0.029. On the basis $EC_{50}$ (${\mu}g/ml$), the correlation coefficient (r) between tebuconazole and prochloraz manganese complex, prochloraz manganese complex and FP, tebuconazole and FP were 0.42, 0.44 and 0.27, respectively.

Biochemical Characterization of Heterologously Expressed Chitinase 1 (Chi1) from an Inky Cap, Coprinellus congregatus (이형 재조합한 먹물버섯 Coprinellus congregatus Chitinase 1 (Chi1)의 발현과 생화학적 특성 분석)

  • Yoo, Yeeun;Choi, Hyoung T.
    • Korean Journal of Microbiology
    • /
    • v.49 no.4
    • /
    • pp.309-312
    • /
    • 2013
  • Fungal cell walls consist of various glucans and chitin. Fungi produce chitinases for their growth and development. The inky cap, Coprinellus congregatus, produces at least two different chitinases during its life cycle. Chitinase 1 (chi1) is expresses throughout its life cycle while chitinase 2 (chi2) is expressed at the mushroom autolysing phase. The cloned cDNA of chi1 is successfully expressed as a fusion protein with c-myc in Pichia pastoris, and purified by the affinity chromatography. The optimum pH and temperature of Chi1 was pH 8.0 and $35^{\circ}C$, respectively when 4-nitrophenyl N,N',N"-triacetyl-${\beta}$-D-chitotrioside was used as the substrate. The $K_m$ value and $V_{max}$ for the substrate was 0.780 mM and 0.10 OD $min^{-1}unit^{-1}$, respectively. The addition of purified Chi1 resulted in total growth inhibition against several plant pathogenic fungi such as Alternaria alternata, Fusarium graminearum and Trichoderma harzianum at the concentration of 60 ${\mu}g/ml$.

Nitrogen Utilization of Cell Mass from Lysine Production in Goats

  • Seo, S.;Kim, H.J.;Lee, S.Y.;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.4
    • /
    • pp.561-566
    • /
    • 2008
  • Two experiments were conducted to evaluate nutritive value of cell mass from lysine production (CMLP) as a protein supplement for ruminants. In each experiment, animals were fed a diet containing 40% of forages and 60% of concentrates, mainly composed of rice straw and ground corn, respectively, to meet the maintenance requirements, and the diets were formulated to supply equal amounts of energy and nitrogen among treatments. In order to investigate the effect of CMLP on ruminal fermentation (Experiment 1), three Korean native goats weighing $26.1{\pm}1.4kg$ were allotted into individual cages with a $3{\times}3$ Latin square design. Each animal was fed one of three protein sources (CMLP, soybean meal (SBM), and urea). Rumen pH, bacterial and fungal counts, volatile fatty acid concentrations and acetate to propionate ratio were not significantly different among treatments. Concentration of propionate, however, was higher in SBM treatment (14.1 mM) than in CMLP (8.7 mM) or urea (9.3 mM) treatments. There was significantly more branch-chain volatile fatty acid production in CMLP (1.9 mM) and SBM (1.8 mM) treatments than in urea (1.3 mM) treatment. The number of protozoa was the highest in urea treatment, followed by CMLP and SBM treatment with significant differences. A metabolic trial (Experiment 2) was conducted to measure in vivo nutrient digestibility and nitrogen retention in Korean native goats fed CMLP and SBM. Two heavy ($35.0{\pm}1.2kg$) and two light ($25.0{\pm}0.9kg$) Korean native goats, caged individually, were used in this experiment. A heavy and a light animal were paired and supplemented with either CMLP or SBM. The animals fed CMLP showed a trend of lower total tract digestibility in all the nutrients measured; however, there was no statistical significance except for digestibility of ether extract. Nitrogen digestibility of CMLP was estimated to be about 7% units lower than that of SBM. There was a tendency for lower nitrogen retention in CMLP treatment (35.9%) compared to SBM treatment (42.3%). In summary, CMLP can be a good protein source for ruminant animals from nutritional and economic perspectives and may replace some, if not all, of SBM in a diet without losing nitrogen utilization efficiency. Further research is warranted for investigating the effect of CMLP fed with easily fermentable forage and the effective level of CMLP for replacing SBM.

Inhibitory Effect of Ni2+ on the Tolaasin-induced Hemolysis (톨라신의 용혈활성에 대한 Ni2+의 저해효과)

  • Choi, Tae-Keun;Wang, Hee-Sung;Kim, Young-Kee
    • Journal of Applied Biological Chemistry
    • /
    • v.52 no.1
    • /
    • pp.28-32
    • /
    • 2009
  • The bacterial toxin, tolaasin, causes brown blotch disease on the cultivated mushrooms by collapsing fungal and fruiting body structure of mushroom. Cytotoxicity of tolaasin was evaluated by measuring hemolytic activity because tolaasins form membrane pores on the red blood cells and destroy cell structure. While we investigated the inhibitions of hemolytic activity of tolaasin by $Zn^{2+}$ and $Cd^{2+}$, we found that $Ni^{2+}$ is another antagonist to block the toxicity of tolaasin. $Ni^{2+}$ inhibited the tolaasin-induced hemolysis in a dose-dependent manner and its Ki value was $\sim10$ mM, implying that the inhibitory effect of $Ni^{2+}$ is stronger than that of $Cd^{2+}$. The hemolytic activity was completely inhibited by $Ni^{2+}$ at the concentration higher than 50 mM. The effect of $Ni^{2+}$ was reversible since it was removed by the addition of EDTA. When the tolaasin-induced hemolysis was suppressed by the addition of 20 mM $Ni^{2+}$, the subsequent addition of EDIA immediately initiated the hemolysis. Although the mechanism of $Ni^{2+}$ -induced inhibition on tolaasin toxicity is not known, $Ni^{2+}$ could inhibit any of fallowing processes of tolaasin action, membrane binding, molecular multimerization, pore formation, and massive ion transport through the membrane pore. Our results indicate that $Ni^{2+}$ inhibits the pore activity of tolaasin, the last step of the toxic process.

Concentration- and Time-Dependent Effect of Disinfectant Treatment on Sorghum Seeds (소독제의 침지시간 및 희석농도가 수수 발아 및 오염율에 미치는 영향)

  • Kim, Kyeongmin;Choi, Se-Hyun;Kim, Changsoo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.2
    • /
    • pp.124-129
    • /
    • 2020
  • Sorghum (Sorghum bicolor L.) is an annual crop belonging to Poaceae, and is the fifth-largest crop after maize, wheat, rice, and barley. This study was conducted to establish an efficient seed sterilization method to manage fungal or bacterial infections of germinating sorghum seeds. Two varieties of sorghum seeds (BTx623 and SAP317) were treated with benomyl-thiram and thiophanate-methyl triflumizole which are known to be effective disinfectants for sorghum seeds. For SAP317, the highest germination rate was accomplished with 24-hour treatment of both chemicals at a 200× dilution rate. For BTx623, the highest germination rate was observed after 24-hour treatment at a 200×/400× dilution rate for benomyl-thiram and control/200× for thiophanate-methyl triflumizole. Consequently, the optimal treatment for the seed disinfection in sorghum seeds may be at the dilution rate of 200× or 400× for 24 hours.

Determination of Amisulbrom Residues in Agricultural Commodities Using HPLC-UVD/MS (HPLC-UVD/MS를 이용한 농산물 중 Amisulbrom의 잔류분석)

  • Ahn, Kyung-Geun;Kim, Gyeong-Ha;Kim, Gi-Ppeum;Kim, Min-Ji;Hwang, Young-Sun;Hong, Seung-Beom;Lee, Young Deuk;Choung, Myoung-Gun
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.4
    • /
    • pp.321-329
    • /
    • 2014
  • This experiment was conducted to establish an analytical method for residues of amisulbrom, as recently developed an oomycete-specific fungicide showing inhibition of fungal respiration, in crops using HPLC-UVD/MS. Amisulbrom residue was extracted with acetonitrile from representative samples of five raw products which comprised apple, green pepper, kimchi cabbage, potato and hulled rice. The extract was diluted with 50 mL of saline water and directly partitioned into dichloromethane to remove polar co-extractives in the aqueous phase. For the hulled rice sample, n-hexane/acetonitrile partition was additionally employed to remove non-polar lipids. The extract was finally purified by optimized Florisil column chromatography. On an octadecylsilyl column in HPLC, amisulbrom was successfully separated from sample co-extractives and sensitively quantitated by ultraviolet absorption at 255 nm with no interference. Accuracy and precision of the proposed method was validated by the recovery test on every crop samples fortified with amisulbrom at 3 concentration levels per crop in each triplication. Mean recoveries ranged from 85.3% to 105.6% in five representative agricultural commodities. The coefficients of variation were all less than 10%, irrespective of sample types and fortification levels. Limit of quantitation (LOQ) of amisulbrom was 0.04 mg/kg as verified by the recovery experiment. A confirmatory method using LC/MS with selected-ion monitoring technique was also provided to clearly identify the suspected residue. The proposed method was sensitive, reproducible and easy-to-operate enough to routinely determine the residue of amisulbrom in agricultural commodities.

Screening of Antifungal Medicinal Plants for Turfgrass Fungal Disease Control (잔디 병해 방제를 위한 항균성 약용식물의 탐색)

  • Kwon, Soo-Mean;Kim, Dae-Ho;Chang, Tae-Hyun;Jeon, Min-Goo;Kim, In-Seob;Kim, Ik-Hwi
    • Asian Journal of Turfgrass Science
    • /
    • v.24 no.2
    • /
    • pp.176-181
    • /
    • 2010
  • Brown patch (Rhizoctonia solani AG1-1), dollar spot (Sclerotinia homoeocarpa), pythium blight (Pythium spp.), anthracnose (Colletotrichum graminicola), yellow patch (Rhizoctonia cerealis) and Zoysia patch (Rhizoctonia solani AG2-2) are the major turfgrasses diseases in Korea. In this study, 23 medicinal plant extracts were tested for antifungal activities against turfgrass pathogenic fungi. In paper disk diffusion method, 12 medicinal plant extracts, including Sophora flavescens, showed antifungal activity. Also, in the test of antifungal activity on media contained the extracts of S. flavescens, Curcuma longa, Rheum undulatum, Coptis chinensis and Asiasarum sieboldi showed above 80% inhibitory effects on the mycelial growth in 110 mg/10 ml concentration of the extracts. S. flavescens, in particularly, showed antifungal activity against the six turfgrass pathogenic fungi. The inhibition rate of S. homoeocarpa was 100% in 10 mg/10 ml, 5 mg/10 ml and 2 mg/10 ml concentrations of C. longa extract. In case of Pythium spp., the extracts of S. flavescens, R. undulatum and C. chinensis showed 100 % inhibition rate on the test media.

Studies on the Hydrolysis of Inulin in Jerusalem Artichokes by Fungal Inulase (미생물(微生物) Inulase에 의(依)한 돼지감자 중의 Inulin분해(分解)에 관한 연구(硏究))

  • Kim, Ki-Choul
    • Applied Biological Chemistry
    • /
    • v.18 no.3
    • /
    • pp.177-182
    • /
    • 1975
  • The analysis of Jerusalem artichoke showed that it contains 12.09% of Inulin. The results obtained from the examination of the conditions for fructose production by cultivating Pencillum sp 1 in the Jerusalem articoke medium were as follows: 1. The optimum amount of water added to Jerusalem artichoke was 2.5 $\ell$ of distilled water per ㎏ of fresh Jerusalem artichoke. It this case, the concentration of Inulin was 4% (w/v). 2. The optimum temperature was $30^{\circ}C$, the initial optimum pH was 5.0 and the optimum cultural period was 72 hours. 3. Shaking culture with 50 ml of the medium and 120 oscills/min in 500 ml shaking flask was most effective as the culture method. 4. 0.1% of $NH_4H_2PO_4$ as a nitrogen source, 0.001 of $FeSO_47H_20$ and 0.001% of $MgSO_47H_2$ as metal salts were most effective. 5. Fructose production continued to increase for 72 hours under the optimum conditions for cultivation and the highest production rate to the Inulin was 95.25%.

  • PDF