• 제목/요약/키워드: Functionally graded

검색결과 1,102건 처리시간 0.023초

Comparative study on the bending of exponential and sigmoidal sandwich beams under thermal conditions

  • Aman, Garg;Mohamed-Ouejdi, Belarbi;Li, Li;Hanuman D., Chalak;Abdelouahed, Tounsi
    • Structural Engineering and Mechanics
    • /
    • 제85권2호
    • /
    • pp.217-231
    • /
    • 2023
  • The bending analysis of sandwich functionally graded (FG) beams under temperature circumstances is performed in this article utilizing Navier's solution-based parabolic shear deformation theory. For the first time, a comparative study has been carried out between the exponential and sigmoidal sandwich FGM beams under thermal conditions. During this investigation, temperature-dependent material characteristics are postulated. Both symmetric and unsymmetric sandwich examples have been studied. The effect of gradation law, gradation coefficient, and thickness scheme on beam behavior has been thoroughly investigated. Three possible temperature combinations at the top and bottom surfaces of the beam are also investigated. Beams with a higher proportion of ceramic to metal are shown to be more resistant to thermal stresses than beams with a higher proportion of metal.

Intelligent computer modeling of large amplitude behavior of FG inhomogeneous nanotubes

  • Wu, Xiongwei;Fang, Ting
    • Advances in nano research
    • /
    • 제12권6호
    • /
    • pp.617-627
    • /
    • 2022
  • In the current study, the nonlinear impact of the Von-Kármán theory on the vibrational response of nonhomogeneous structures of functionally graded (FG) nano-scale tubes is investigated according to the nonlocal theory of strain gradient theory as well as high-order Reddy beam theory. The inhomogeneous distributions of temperature-dependent material consist of ceramic and metal phases in the radial direction of the tube structure, in which the thermal stresses are applied due to the temperature change in the thickness of the pipe structure. The general motion equations are derived based on the Hamilton principle, and eventually, the acquired equations are solved and modeled by the Meshless approach as well as a computer simulation via intelligent mathematical methodology. The attained results are helpful to dissect the stability of the MEMS and NEMS.

Computer visualization approach for rotating FG shell: Assessment with ring supports

  • Al Thobiani, Faisal;Khadimallah, Mohamed A.;Hussain, Muzamal;Mohamed, Gar Al-Nabi Ibrahim;Ghandourah, Emad
    • Computers and Concrete
    • /
    • 제28권6호
    • /
    • pp.559-566
    • /
    • 2021
  • In this paper, frequency analysis has been done for functionally graded cylindrical shell with ring supports using Sander's shell theory. The vibrations of rotating cylindrical shells are analyzed for different physical factors. The fundamental natural frequency is investigated for different parameters such as: ratios of length-to-diameter ring supports. By increasing different value of height-to-radius ratio, the resulting backward and forward frequencies increase and frequencies decrease on increasing height-to-radius ratio. The frequencies for different position of ring supports are obtained in the form of bell shaped. The backward frequencies increases and forward frequencies decrease on increasing the rotating speed. The results generated furnish the evidence regarding applicability of present shell model and also verified by earlier published literature.

A new solution for dynamic response of FG nonlocal beam under moving harmonic load

  • Hosseini, S.A.H.;Rahmani, O.;Bayat, S.
    • Steel and Composite Structures
    • /
    • 제43권2호
    • /
    • pp.185-200
    • /
    • 2022
  • A Closed-form solution for dynamic response of a functionally graded (FG) nonlocal nanobeam due to action of moving harmonic load is presented in this paper. Due to analyzing in small scale, a nonlocal elasticity theory is utilized. The governing equation and boundary conditions are derived based on the Euler-Bernoulli beam theory and Hamilton's principle. The material properties vary through the thickness direction. The harmonic moving load is modeled by Delta function and the FG nanobeam is simply supported. Using the Laplace transform the dynamic response is obtained. The effect of important parameters such as excitation frequency, the velocity of the moving load, the power index law of FG material and the nonlocal parameter is analyzed. To validate, the results were compared with previous literature, which showed an excellent agreement.

Nonlinear snap-buckling and resonance of FG-GPLRC curved beams with different boundary conditions

  • Lei-Lei Gan;Gui-Lin She
    • Geomechanics and Engineering
    • /
    • 제32권5호
    • /
    • pp.541-551
    • /
    • 2023
  • Snap-buckling is one of the main failure modes of structures, because it will lead to the reduction of structural bearing capacity, durability loss and even structural damage. Boundary condition plays an important role in the research of engineering mechanics. Further discussion on the boundary conditions problems will help to analyze the dynamic and static behavior of structures more accurately. Therefore, in order to understand the dynamic and static behavior of curved beams more comprehensively, this paper mainly studies the nonlinear snap-through buckling and forced vibration characteristics of functionally graded graphene reinforced composites (FG-GPLRCs) curved beams with two different boundary conditions (including clamped-hinged and hinged-hinged) using Euler-Bernoulli beam theory (E-BBT). In addition, the effects of the curved beam radius, the GLPs distributions, number of GLPs layers, the mass fraction of GLPs and elastic foundation parameters on the nonlinear snap-through buckling and forced vibration behavior are discussed respectively.

Nonlocal bending characteristics of nanoplate reinforced by functionally graded GPLs exposed to thermo-mechanical loads resting on the Pasternak's foundation

  • Masoud Kiani;Mohammad Arefi
    • Advances in concrete construction
    • /
    • 제15권2호
    • /
    • pp.97-114
    • /
    • 2023
  • The nonlocal strain gradient theory for the static bending analysis of graphene nanoplatelets (GPLs) reinforced the nanoplate is developed in this paper. The nanoplatelet is exposed to thermo-mechanical loads and is also supposed to stand on an elastic foundation. For computing impressive composite material characteristics, the Halpin-Tsai model is selected for various sectors. The various distributions are propounded including UD, FG-O, and FG-X. The represented equations are acquired based on the virtual work and sinusoidal shear and normal deformation theory (SSNDT). Navier's solution as the analytical method is applied to solve these equations. Furthermore, the effects of GPL weight fraction, temperature parameters, distribution pattern and parameters of the foundation are presented and discussed.

Elastic wave propagation analysis in sandwich nanoplate assuming size effects

  • Amir Behshad;Maryam Shokravi;Akbar Shafiei Alavijeh;Hamed, Karami
    • Steel and Composite Structures
    • /
    • 제47권1호
    • /
    • pp.71-77
    • /
    • 2023
  • This paper presents a study on the wave propagation of functionally graded material (FGM) sandwich nanoplates with soft core resting on a Winkler foundation. The structure is modelled by classical theory. Motion equations are derived by the assumption of nonlocal Eringen theory and energy method. Then, the equations are solved using an exact method for finding phase velocity responses. The effects of Winkler foundation, nonlocal parameters, thickness and mode number on the dispersion of elastic waves are shown. With the increase of spring constant, the speed of wave propagation increases and reaches a uniform state at a higher wave number.

Wave propagation of FGM plate via new integral inverse cotangential shear model with temperature-dependent material properties

  • Mokhtar Ellali;Mokhtar Bouazza;Ashraf M. Zenkour
    • Geomechanics and Engineering
    • /
    • 제33권5호
    • /
    • pp.427-437
    • /
    • 2023
  • The objective of this work is to study the wave propagation of an FGM plate via a new integral inverse shear model with temperature-dependent material properties. In this contribution, a new model based on a high-order theory field of displacement is included by introducing indeterminate integral variables and inverse co-tangential functions for the presentation of shear stress. The temperature-dependent properties of the FGM plate are assumed mixture of metal and ceramic, and its properties change by the power functions of the thickness of the plate. By applying Hamilton's principle, general formulas of wave propagation were obtained to plot the phase velocity curves and wave modes of the FGM plate with simply supported edges. The effects of the temperature and volume fraction by distributions on wave propagation of the FGM plate are investigated in detail. The results of the dispersion and the phase velocity curves of the propagation wave in the functionally graded plate are compared with previous research.

Critical thermal buckling analysis of porous FGP sandwich plates under various boundary conditions

  • Abdelhak Zohra;Benferhat Rabia;Hassaine Daouadji Tahar
    • Structural Engineering and Mechanics
    • /
    • 제87권1호
    • /
    • pp.29-46
    • /
    • 2023
  • Critical thermal buckling of functionally graded porous (FGP) sandwich plates under various types of thermal loading is considered. It is assumed that the mechanical and thermal nonhomogeneous properties of FGP sandwich plate vary smoothly by distribution of power law across the thickness of sandwich plate. In this paper, porosity defects are modeled as stiffness reduction criteria and included in the rule of mixture. The thermal environments are considered as uniform, linear and nonlinear temperature rises. The critical buckling temperature response of FGM sandwich plates has been analyzed under various boundary conditions. By comparing several numerical examples with the reference solutions, the results indicate that the present analysis has good accuracy and rapid convergence. Further, the effects of various parameters like distribution shape of porosity, sandwich combinations, aspect ratio, thickness ratio, boundary conditions on critical buckling temperature of FGP sandwich plate have been studied in this paper.

Wave propagation in double nano-beams in thermal environments using the Reddy's high-order shear deformation theory

  • Fei Wu;Gui-Lin She
    • Advances in nano research
    • /
    • 제14권6호
    • /
    • pp.495-506
    • /
    • 2023
  • We study the bending wave, shear wave and longitudinal wave characteristics in the double nanobeams in this paper for the first time, in the process of research, based on the Reddy's higher-order shear deformation theory and considering shear layer stiffness, linear stiffness, inter-laminar stiffness, the pore volume fraction, temperature variation, functionally graded index influence on wave propagation, based on the nonlocal strain gradient theory and Hamilton variational principle, the wave equation of the double-nanometer beams are derived. Since there are three different motion states for the double nanobeams, which includes the cases of "in phase", "out of phase" and "one nanobeam fixed", the propagation characteristics of shear-, bending-, and longitudinal- waves in these three cases are discussed respectively, and some valuable conclusions are obtained.