• Title/Summary/Keyword: Functional Near-Infrared Spectroscopy (fNIRS)

Search Result 17, Processing Time 0.02 seconds

Assessment of Classification Accuracy of fNIRS-Based Brain-computer Interface Dataset Employing Elastic Net-Based Feature Selection (Elastic net 기반 특징 선택을 적용한 fNIRS 기반 뇌-컴퓨터 인터페이스 데이터셋 분류 정확도 평가)

  • Shin, Jaeyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.268-276
    • /
    • 2021
  • Functional near-infrared spectroscopy-based brain-computer interface (fNIRS-based BCI) has been receiving much attention. However, we are practically constrained to obtain a lot of fNIRS data by inherent hemodynamic delay. For this reason, when employing machine learning techniques, a problem due to the high-dimensional feature vector may be encountered, such as deteriorated classification accuracy. In this study, we employ an elastic net-based feature selection which is one of the embedded methods and demonstrate the utility of which by analyzing the results. Using the fNIRS dataset obtained from 18 participants for classifying brain activation induced by mental arithmetic and idle state, we calculated classification accuracies after performing feature selection while changing the parameter α (weight of lasso vs. ridge regularization). Grand averages of classification accuracy are 80.0 ± 9.4%, 79.3 ± 9.6%, 79.0 ± 9.2%, 79.7 ± 10.1%, 77.6 ± 10.3%, 79.2 ± 8.9%, and 80.0 ± 7.8% for the various values of α = 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, and 0.5, respectively, and are not statistically different from the grand average of classification accuracy estimated with all features (80.1 ± 9.5%). As a result, no difference in classification accuracy is revealed for all considered parameter α values. Especially for α = 0.5, we are able to achieve the statistically same level of classification accuracy with even 16.4% features of the total features. Since elastic net-based feature selection can be easily applied to other cases without complicated initialization and parameter fine-tuning, we can be looking forward to seeing that the elastic-based feature selection can be actively applied to fNIRS data.

A Case Study on the Effectiveness of tDCS to Reduce Cyber-Sickness in Subjects with Dizziness

  • Chang Ju Kim;Yoon Tae Hwang;Yu Min Ko;Seong Ho Yun;Sang Seok Yeo
    • The Journal of Korean Physical Therapy
    • /
    • v.36 no.1
    • /
    • pp.39-44
    • /
    • 2024
  • Purpose: Cybersickness is a type of motion sickness induced by virtual reality (VR) or augmented reality (AR) environments that presents symptoms including nausea, dizziness, and headaches. This study aimed to investigate how cathodal transcranial direct current stimulation (tDCS) alleviates motion sickness symptoms and modulates brain activity in individuals experiencing cybersickness after exposure to a VR environment. Methods: This study was performed on two groups of healthy adults with cybersickness symptoms. Subjects were randomly assigned to receive either cathodal tDCS intervention or sham tDCS intervention. Brain activity during VR stimulation was measured by 38-channel functional near-infrared spectroscopy (fNIRS). tDCS was administered to the right temporoparietal junction (TPJ) for 20 minutes at an intensity of 2mA, and the severity of cybersickness was assessed pre- and post-intervention using a simulator sickness questionnaire (SSQ). Result: Following the experiment, cybersickness symptoms in subjects who received cathodal tDCS intervention were reduced based on SSQ scores, whereas those who received sham tDCS showed no significant change. fNIRS analysis revealed that tDCS significantly diminished cortical activity in subjects with high activity in temporal and parietal lobes, whereas high cortical activity was maintained in these regions after intervention in subjects who received sham tDCS. Conclusion: These findings suggest that cathodal tDCS applied to the right TPJ region in young adults experiencing cybersickness effectively reduces motion sickness induced by VR environments.

Applying a Novel Neuroscience Mining (NSM) Method to fNIRS Dataset for Predicting the Business Problem Solving Creativity: Emphasis on Combining CNN, BiLSTM, and Attention Network

  • Kim, Kyu Sung;Kim, Min Gyeong;Lee, Kun Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.1-7
    • /
    • 2022
  • With the development of artificial intelligence, efforts to incorporate neuroscience mining with AI have increased. Neuroscience mining, also known as NSM, expands on this concept by combining computational neuroscience and business analytics. Using fNIRS (functional near-infrared spectroscopy)-based experiment dataset, we have investigated the potential of NSM in the context of the BPSC (business problem-solving creativity) prediction. Although BPSC is regarded as an essential business differentiator and a difficult cognitive resource to imitate, measuring it is a challenging task. In the context of NSM, appropriate methods for assessing and predicting BPSC are still in their infancy. In this sense, we propose a novel NSM method that systematically combines CNN, BiLSTM, and attention network for the sake of enhancing the BPSC prediction performance significantly. We utilized a dataset containing over 150 thousand fNIRS-measured data points to evaluate the validity of our proposed NSM method. Empirical evidence demonstrates that the proposed NSM method reveals the most robust performance when compared to benchmarking methods.

Multimodal Bio-signal Measurement System for Sleep Analysis (수면 분석을 위한 다중 모달 생체신호 측정 시스템)

  • Kim, Sang Kyu;Yoo, Sun Kook
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.5
    • /
    • pp.609-616
    • /
    • 2018
  • In this paper, we designed a multimodal bio-signal measurement system to observe changes in the brain nervous system and vascular system during sleep. Changes in the nervous system and the cerebral blood flow system in the brain during sleep induce a unique correlation between the changes in the nervous system and the blood flow system. Therefore, it is necessary to simultaneously observe changes in the brain nervous system and changes in the blood flow system to observe the sleep state. To measure the change of the nervous system, EEG, EOG and EMG signal used for the sleep stage analysis were designed. We designed a system for measuring cerebral blood flow changes using functional near-infrared spectroscopy. Among the various imaging methods to measure blood flow and metabolism, it is easy to measure simultaneously with EEG signal and it can be easily designed for miniaturization of equipment. The sleep stage was analyzed by the measured data, and the change of the cerebral blood flow was confirmed by the change of the sleep stage.

Neuro-scientific Approach to Fashion Visual Merchandising -Comparison of Brain Activation to Positive/Negative VM in Fashion Store Using fNIRS- (패션 비주얼머천다이징의 뇌 과학적 접근 -fNIRS를 이용한 패션매장의 긍정적/부정적 VM에 대한 뇌 활성 비교-)

  • Kim, Hyoung Suk;Lee, Jin Hwa
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.2
    • /
    • pp.254-265
    • /
    • 2017
  • This study examines the possibility of a neuro-scientific approach to fashion Visual Merchandising (VM), by researching the brain activation of customers about fashion stores in terms of VM. Study subjects were in 20's-30's residing in Busan and ten ordinary person or fashion industry related individuals, it measures the change of cerebral blood flow on positive/negative photo stimulus in terms of VM using a functional Near Infrared Spectroscopy (fNIRS) device, and then compared the brain activation to the difference of the fashion store VM. Photo stimuli utilized in the experiment were selected through a preliminary study in advance. The results of this study are as follows. First, the brain activation was found in all 16 channels of stimulus ranges of fashion store VM regardless of positive/negative stimulus. This means that the VM of fashion store causes changes to the cerebral blood flow of consumers, which implies that consumer behavior can be affected by store VM. It also shows that the brain is more active in negative VM stimulus than positive VM despite slight differences in the subjects. In terms of VM, this suggests that the negative factors of fashion stores have a greater effect on the brains of consumers compared to the positive factors. Second, the reaction of the brain channel is different according to the positive/negative VM stimulus of the fashion store by product group and confirms that positive/negative VM stimulus can be distinguished by brain-reaction for the three product groups except for the underwear group among four product groups (men's wear store, women's wear store, underwear store, and sportswear store). The results indicate that more objective scientific measure and decision-making are possible through neuro-science in the strategic execution of VM. This study verified the possibility for a neuro-scientific approach to fashion VM; therefore, there are expectations for the various activation of interdisciplinary research and subsequent development of VM that utilize neuroscience in fashion marketing.

Studies on Thermal Stability and Cure Behavior of Epoxy Resins using Electron-beam Curing Technique (전자선 경화를 이용한 에폭시 수지의 열안정성과 경화동력학에 관한 연구)

  • 박수진;허건영;이재락
    • Composites Research
    • /
    • v.15 no.2
    • /
    • pp.40-47
    • /
    • 2002
  • The di-functional epoxy resins, i.e., diglycidylether of bisphenol A(DGEBA) and diglycidylethere of bisphenol F(DGEBF) were initiated by cationic catalyst, i.e., benzylquinoxalinium hexafluoroantimonate(BQH) using electron-beam(EB) technique. And the effect of structure of DGEBA and DGEBF on thermal stabilities and cure behaviors was investigated. According to the experimental results, the decomposed activation energy based on Horowitz-Metzger method was higher in the case of DGEBA, but intergral procedural decomposition temperature(IPDT) of DGEBA was lower than DGEBF. This could be interpreted in terms of high crosslink density resulted from hydroxyl bond of DGEBF backbone. It was confirmed in increasing the hydroxyl band at $7000\;cm^{-1}$ and $5235\;cm^{-1}$ using near-infrared spectroscopy(NIRS).

A Systematic Review of Cortical Excitability during Dual-Task in Post-Stroke Patients

  • Soyi Jung;Chang-Sik An
    • Physical Therapy Rehabilitation Science
    • /
    • v.13 no.2
    • /
    • pp.213-222
    • /
    • 2024
  • Objective: Stroke is a leading cause of disability worldwide, often leaving survivors with significant cognitive and motor impairments. Dual-task (DT), which involves performing cognitive and motor tasks simultaneously, can influence brain activation patterns and functional recovery in stroke patients. Design: A systematic review Methods: Following PRISMA guidelines, databases including MEDLINE, CINAHL, Embase, and Web of Science were searched for studies assessing cortical activation via functional near-infrared spectroscopy (fNIRS) during DT performance in stroke patients. Studies were selected based on predefined eligibility criteria, focusing on changes in hemodynamic responses and their correlation with task performance. Results: Eight studies met the inclusion criteria. Findings indicate that DT leads to increased activation in the prefrontal cortex (PFC), premotor cortex (PMC), and posterior parietal cortex (PPC), suggesting an integrated cortical response to managing concurrent cognitive and motor demands. However, increased activation did not consistently translate to improved functional outcomes, highlighting the complex relationship between brain activation and rehabilitation success. Conclusions: DT interventions may enhance cortical activation and neuroplasticity in post-stroke patients, but the relationship between increased brain activity and functional recovery remains complex and requires further investigation. Tailored DT programs that consider individual neurophysiological and functional capacities are recommended to optimize rehabilitation outcomes.