• Title/Summary/Keyword: Functional Equation

Search Result 928, Processing Time 0.024 seconds

ON THE SUPERSTABILITY OF SOME PEXIDER TYPE FUNCTIONAL EQUATION II

  • Kim, Gwang-Hui
    • The Pure and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.397-411
    • /
    • 2010
  • In this paper, we will investigate the superstability for the sine functional equation from the following Pexider type functional equation: $f(x+y)-g(x-y)={\lambda}{\cdot}h(x)k(y)$ ${\lambda}$: constant, which can be considered an exponential type functional equation, the mixed functional equation of the trigonometric function, the mixed functional equation of the hyperbolic function, and the Jensen type equation.

ON THE STABILITY OF THE GENERAL SEXTIC FUNCTIONAL EQUATION

  • Chang, Ick-Soon;Lee, Yang-Hi;Roh, Jaiok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.295-306
    • /
    • 2021
  • The general sextic functional equation is a generalization of many functional equations such as the additive functional equation, the quadratic functional equation, the cubic functional equation, the quartic functional equation and the quintic functional equation. In this paper, motivating the method of Găvruta [J. Math. Anal. Appl., 184 (1994), 431-436], we will investigate the stability of the general sextic functional equation.

SUPERSTABILITY OF A GENERALIZED EXPONENTIAL FUNCTIONAL EQUATION OF PEXIDER TYPE

  • Lee, Young-Whan
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.3
    • /
    • pp.357-369
    • /
    • 2008
  • We obtain the superstability of a generalized exponential functional equation f(x+y)=E(x,y)g(x)f(y) and investigate the stability in the sense of R. Ger [4] of this equation in the following setting: $$|\frac{f(x+y)}{(E(x,y)g(x)f(y)}-1|{\leq}{\varphi}(x,y)$$ where E(x, y) is a pseudo exponential function. From these results, we have superstabilities of exponential functional equation and Cauchy's gamma-beta functional equation.

ON THE SUPERSTABILITY FOR THE p-POWER-RADICAL SINE FUNCTIONAL EQUATION

  • Gwang Hui Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.3
    • /
    • pp.801-812
    • /
    • 2023
  • In this paper, we investigate the superstability for the p-power-radical sine functional equation $$f\(\sqrt[p]{\frac{x^p+y^p}{2}}\)^2-f\(\sqrt[p]{\frac{x^p-y^p}{2}}\)^2=f(x)f(y)$$ from an approximation of the p-power-radical functional equation: $$f(\sqrt[p]{x^p+y^p})-f(\sqrt[p]{x^p-y^p})={\lambda}g(x)h(y),$$ where p is an odd positive integer and f, g, h are complex valued functions. Furthermore, the obtained results are extended to Banach algebras.

STABILITY OF PARTIALLY PEXIDERIZED EXPONENTIAL-RADICAL FUNCTIONAL EQUATION

  • Choi, Chang-Kwon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.269-275
    • /
    • 2021
  • Let ℝ be the set of real numbers, f, g : ℝ → ℝ and �� ≥ 0. In this paper, we consider the stability of partially pexiderized exponential-radical functional equation $$f({\sqrt[n]{x^N+y^N}})=f(x)g(y)$$ for all x, y ∈ ℝ, i.e., we investigate the functional inequality $$\|f({\sqrt[n]{x^N+y^N}})-f(x)g(y)\|{\leq}{\epsilon}$$ for all x, y ∈ ℝ.

APPROXIMATE ADDITIVE MAPPINGS IN 2-BANACH SPACES AND RELATED TOPICS: REVISITED

  • YUN, SUNGSIK
    • Korean Journal of Mathematics
    • /
    • v.23 no.3
    • /
    • pp.393-399
    • /
    • 2015
  • W. Park [J. Math. Anal. Appl. 376 (2011) 193-202] proved the Hyers-Ulam stability of the Cauchy functional equation, the Jensen functional equation and the quadratic functional equation in 2-Banach spaces. But there are serious problems in the control functions given in all theorems of the paper. In this paper, we correct the statements of these results and prove the corrected theorems. Moreover, we prove the superstability of the Cauchy functional equation, the Jensen functional equation and the quadratic functional equation in 2-Banach spaces under the original given conditions.