• Title/Summary/Keyword: Function optimization

Search Result 3,339, Processing Time 0.032 seconds

Multi-disciplinary Optimization of Composite Sandwich Structure for an Aircraft Wing Skin Using Proper Orthogonal Decomposition (적합직교분해법을 이용한 항공기 날개 스킨 복합재 샌드위치 구조의 다분야 최적화)

  • Park, Chanwoo;Kim, Young Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.535-540
    • /
    • 2019
  • The coupling between different models for MDO (Multi-disciplinary Optimization) greatly increases the complexity of the computational framework, while at the same time increasing CPU time and memory usage. To overcome these difficulties, POD (Proper Orthogonal Decomposition) and RBF (Radial Basis Function) are used to solve the optimization problem of determining the thickness of composites and sandwich cores when composite sandwich structures are used as aircraft wing skin materials. POD and RBF are used to construct surrogate models for the wing shape and the load data. Optimization is performed using the objective function and constraint function values which are obtained from the surrogate models.

Optimization of FCM-based Radial Basis Function Neural Network Using Particle Swarm Optimization (PSO를 이용한 FCM 기반 RBF 뉴럴 네트워크의 최적화)

  • Choi, Jeoung-Nae;Kim, Hyun-Ki;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2108-2116
    • /
    • 2008
  • The paper concerns Fuzzy C-Means clustering based Radial Basis Function neural networks (FCM-RBFNN) and the optimization of the network is carried out by means of Particle Swarm Optimization(PSO). FCM-RBFNN is the extended architecture of Radial Basis Function Neural Network(RBFNN). In the proposed network, the membership functions of the premise part of fuzzy rules do not assume any explicit functional forms such as Gaussian, ellipsoidal, triangular, etc., so its resulting fitness values directly rely on the computation of the relevant distance between data points by means of FCM. Also, as the consequent part of fuzzy rules extracted by the FCM - RBFNN model, the order of four types of polynomials can be considered such as constant, linear, quadratic and modified quadratic. Weighted Least Square Estimator(WLSE) are used to estimates the coefficients of polynomial. Since the performance of FCM-RBFNN is affected by some parameters of FCM-RBFNN such as a specific subset of input variables, fuzzification coefficient of FCM, the number of rules and the order of polynomials of consequent part of fuzzy rule, we need the structural as well as parametric optimization of the network. In this study, the PSO is exploited to carry out the structural as well as parametric optimization of FCM-RBFNN. Moreover The proposed model is demonstrated with the use of numerical example and gas furnace data set.

Study of Reliability-Based Robust Design Optimization Using Conservative Approximate Meta-Models (보수적 근사모델을 적용한 신뢰성 기반 강건 최적설계 방법)

  • Sim, Hyoung Min;Song, Chang Yong;Lee, Jongsoo;Choi, Ha-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.80-85
    • /
    • 2012
  • The methods of robust design optimization (RDO) and reliability-based robust design optimization (RBRDO) were implemented in the present study. RBRDO is an integrated method that accounts for the design robustness of an objective function and for the reliability of constraints. The objective function in RBRDO is expressed in terms of the mean and standard deviation of an original objective function. Thus, a multi-objective formulation is employed. The regressive approximate models are generated via the moving least squares method (MLSM) and constraint-feasible moving least squares method (CF-MLSM), which make it possible to realize the feasibility regardless of the multimodality/nonlinearity of the constraint function during the approximate optimization processes. The regression model based RBRDO is newly devised and its numerical characteristics are explored using the design of an actively controlled ten bar truss structure.

Development of the Optimization Design Module of a Brake System (제동 장치 최적 설계 모듈 개발)

  • Jung, Sung-Pil;Park, Tae-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.166-171
    • /
    • 2008
  • In this paper, the optimization design module for the brake system of a vehicle is developed. As using this module, design variables, that minimize an object function and satisfy nonlinear constraint conditions, can be found easily. Before an optimization is operated, Plackett-Burman design, one of the factorial design methods, is used to choose the design variables which affect a response function significantly. Using the response surface analysis, second order recursive model function, which informs a relation between design variables and response function, is estimated. In order to verify the reliability of the model function, analysis of variances(ANOVA) table is used. The value of design variables which minimize the model function and satisfy the constraint conditions is predicted through Sequential Quadratic-Programming (SQP) method. As applying the above procedure to a real vehicle simulation model and comparing the values of object functions of a current and optimized system, the optimization results are verified.

Development of Optimization Methodology for Laser Welding Process Automation Using Neural Network Model and Objective Function (레이저 용접공정의 자동화를 위한 신경망 모델과 목적함수를 이용한 최적화 기법 개발)

  • Park, Young-Whan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.123-130
    • /
    • 2006
  • In manufacturing, process automation and parameter optimization are required in order to improve productivity. Especially in welding process, productivity and weldablity should be considered to determine the process parameter. In this paper, optimization methodology was proposed to determine the welding conditions using the objective function in terms of productivity and weldablity. In order to conduct this, welding experiments were carried out. Tensile test was performed to evaluate the weldability. Neural network model to estimate tensile strength using the laser power, welding speed, and wire feed rate was developed. Objective function was defined using the normalized tensile strength which represented the weldablilty and welding speed and wire feed rate which represented the productivity. The optimal welding parameters which maximized the objective function were determined.

Topology Optimization of Plane Structures using Modal Strain Energy for Fundamental Frequency Maximization

  • Lee, Sang-Jin;Bae, Jung-Eun
    • Architectural research
    • /
    • v.12 no.1
    • /
    • pp.39-47
    • /
    • 2010
  • This paper describes a topology optimization technique which can maximize the fundamental frequency of the structures. The fundamental frequency maximization is achieved by means of the minimization of modal strain energy as an inverse problem so that the strain energy based resizing algorithm is directly used in this study. The strain energy to be minimized is therefore employed as the objective function and the initial volume of structures is used as the constraint function. Multi-frequency problem is considered by the introduction of the weight which is used to combine several target modal strain energy terms into one scalar objective function. Several numerical examples are presented to investigate the performance of the proposed topology optimization technique. From numerical tests, it is found to be that the proposed optimization technique is extremely effective to maximize the fundamental frequency of structure and can successfully consider the multi-frequency problems in the topology optimization process.

Reasonable Optimum Design of Agricultural Reinforced Concrete Structure - Superstructures of Aqueduct - (농업용 철근콘크리트 구조물의 합리적인 최적설계 -수로교 상부구조물-)

  • Kim, Jong-Ok;Park, Chan-Gi;Cha, Sang-Sun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.5
    • /
    • pp.19-26
    • /
    • 2010
  • This study was conducted to find out the reasonable optimum design method of agricultural reinforced concrete structures. Selected design variables are the dimension of concrete section, reinforced steel area, and objective function is formulated by cost function. To test the reliability, efficiency, possibility of application and reasonability of optimum design method, both continuous optimization method and mixed-discrete optimization method were applied to the design of reinforced concrete superstructure of aqueduct and application results were discussed. It is proved that mixed-discrete optimization method is more reliable, efficient and reasonable than continuous optimization method for the optimum design of reinforced concrete agricultural structures.

Evaluation of Efficiency by Applying Different Optimization Method for Axial Compressor (최적화 방법에 따른 축류압축기의 효율평가)

  • Jang, Choon-Man;Abdus, Samad;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.543-544
    • /
    • 2006
  • Shape optimization of a transonic axial compressor rotor operating at the design flow condition has been performed using three-dimensional Navier-Stokes analysis and three different surrogate models: i.e.., Response Surface Method(RSM), Kriging Method, and Radial Basis Function(RBF). Three design variables of blade sweep, lean and skew are introduced to optimize the three-dimensional stacking line of the rotor blade. The object function of the shape optimization is selected as an adiabatic efficiency. Throughout the shape optimization of the rotor blade, the adiabatic efficiency is increased for the three different surrogate models. Detailed flow characteristics at the optimal blade shape obtained by different optimization method are drawn and discussed.

  • PDF

Optimization of Induction Coil Design for Reheating in Thixoforming Process (Thixoforming을 위한 재가열용 유도코일 설계의 최적화)

  • 김남석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.165-168
    • /
    • 1999
  • The coil design of induction heating systems and their optimization are of paramount importance for semi-solid processing(SSP) The authors of this paper present the coil design and optimization of a 60 Hz induction heating system for ALTHIX 86S (Al-6%_Si-3%Cu-0.3%Mg) alloy. An objective function on the basis of the optimization process for the coil design is proposed by introducing an optimization technique. Finally the results of the optimal coil design are also applied to the induction heating process to obtain a fine globular microstructure. The proposed new objective function based on the computational techniques would contribute to obtaining the thixoformed components with good mechanical properties and reducing lead time.

  • PDF

A Sequential Approximate Optimization Technique Using the Previous Response Values (응답량 재사용을 통한 순차 근사최적설계)

  • Hwang Tae-Kyung;Choi Eun-Ho;Lim O-Kaung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.45-52
    • /
    • 2005
  • A general approximate optimization technique by sequential design domain(SDD) did not save response values for getting an approximate function in each step. It has a disadvantage at aspect of an expense. In this paper, previous response values are recycled for constructing an approximate function. For this reason, approximation function is more accurate. Accordingly, even if we did not determine move limit, a system is converged to the optimal design. Size and shape optimization using approximate optimization technique is carried out with SDD. Algorithm executing Pro/Engineer and ANSYS are automatically adopted in the approximate optimization program by SDD. Convergence criterion is defined such that optimal point must be located within SDD during the three steps. The PLBA(Pshenichny-Lim-Belegundu-Arora) algorithm is used to solve approximate optimization problems. This algorithm uses the second-order information in the direction finding problem and uses the active set strategy.