• Title/Summary/Keyword: Function Analysis Phase

Search Result 844, Processing Time 0.029 seconds

A method for underwater image analysis using bi-dimensional empirical mode decomposition technique

  • Liu, Bo;Lin, Yan
    • Ocean Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.137-145
    • /
    • 2012
  • Recent developments in underwater image recognition methods have received large attention by the ocean engineering researchers. In this paper, an improved bi-dimensional empirical mode decomposition (BEMD) approach is employed to decompose the given underwater image into intrinsic mode functions (IMFs) and residual. We developed a joint algorithm based on BEMD and Canny operator to extract multi-pixel edge features at multiple scales in IMFs sub-images. So the multiple pixel edge extraction is an advantage of our approach; the other contribution of this method is the realization of the bi-dimensional sifting process, which is realized utilizing regional-based operators to detect local extreme points and constructing radial basis function for curve surface interpolation. The performance of the multi-pixel edge extraction algorithm for processing underwater image is demonstrated in the contrast experiment with both the proposed method and the phase congruency edge detection.

Development of Algorithm for Passenger Flow Analysis based on DEM (DEM에 기초한 여객 유동 해석 알고리즘 개발)

  • Nam Seong-Won
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.4
    • /
    • pp.337-341
    • /
    • 2005
  • Algorithm for passenger flow analysis based on DEM(Discrete Element Method) is newly developed. In the new algorithm, there are many similarity between multi phase flow and passenger flow. The velocity component of 1st phase corresponds to the direction vector of cell, each particle to each passenger, volume fraction to population density and the momentum equation of particle to the walking velocity equation of passenger, etc. And, the walking velocity of passenger is also represented by the function of population density. Key algorithms are developed to determine the position of passenger, population density and numbering to each passenger, To verify the effectiveness of new algorithm, passenger flow analysis for simple railway station model is conducted. The results for passenger flow in the model station are satisfying qualitatively and quantitatively.

Analysis of Pedestrian Flow Characteristics in Subway Station (지하역사 기본 모델에 대한 여객 유동 특성 해석)

  • Nam Seong-Won
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.3 s.34
    • /
    • pp.271-276
    • /
    • 2006
  • Insight into behaviour of pedestrians as welt as tools to assess passenger flow condition is important in such instances as planning and geometric design of railway station under regular and safety-critical circumstances. Algorithm for passenger flow analysis based on DEM (Discrete Element Method) is newly developed. There are lots of similarity between particle-laden two phase flow and passenger flow. The velocity component of 1st phase corresponds to the unit vector of calculation cell, each particle to passenger, volume fraction to population density and the particle velocity to the walking velocity, etc. And, the walking velocity of passenger is also represented by the function of population density. Key algorithms are developed to determine the position of passenger, population density and numbering to each passenger. To verify the effectiveness of new algorithm, passenger flow analysis for the basic models of railway station is conducted.

Numerical Analysis on Passenger Flow for the Model of Railway Station (철도 역사 모델에 대한 여객 유동 해석)

  • Kwon, Hyeok-Bin;Cha, Chang-Hwan;Nam, Seong-Won
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.387-391
    • /
    • 2006
  • Insight into behaviour of pedestrians as well as tools to assess passenger flow conditions are important in for instance planning and geometric design of railway station under regular and safety-critical circumstances. Algorithm for passenger flow analysis based on DEM(Discrete Element Method) is newly developed. There are lots of similarity between particle-laden two phase flow and passenger flow. The velocity component of 1st phase corresponds to the unit vector of calculation cell, each particle to passenger, volume fraction to population density and the particle velocity to the walking velocity, etc. And, the walking velocity of passenger is also represented by the function of population density. Key algorithms are developed to determine the position of passenger, population density and numbering to each passenger. To verify the effectiveness of new algorithm, passenger flow analysis for the basic models of railway station is conducted.

  • PDF

A Study on Performance Improvement of Modified Window Function (변형된 창함수의 성능향상에 관한 연구)

  • Lee, Kyung-Hyo;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.925-928
    • /
    • 2008
  • With basis of the development of information communication techniques in recent year, the digital processing techniquy also has been growed fast. The digital processing technique have used signals - speech and image processing- for processing of transmission and analysis. After we get and save the signals. Effective signal processing techniques have varied filters and typical digital filters are FIR filter and IIR filter. The FIR digital filter is more secure because phase response characteristics have linear phase. But, FIR digital filters have a problem to product the Gibbs phenomenon generating around a discontinuous point. A propose of filer is to remove the problem. Therefore, in this paper I was proposed a method using FIR digital filter applied a modified window function and the method was compared with conventional methods.

  • PDF

Single-pixel Autofocus with Plasmonic Nanostructures

  • Seok, Godeun;Choi, Seunghwan;Kim, Yunkyung
    • Current Optics and Photonics
    • /
    • v.4 no.5
    • /
    • pp.428-433
    • /
    • 2020
  • Recently, the on-chip autofocus (AF) function has become essential to the CMOS image sensor. An auto-focus usually operates using phase detection of the photocurrent difference from a pair of AF pixels that have focused or defocused. However, the phase-detection method requires a pair of AF pixels for comparison of readout. Therefore, the pixel variation may reduce AF performance. In this paper, we propose a color-selective AF pixel with a plasmonic nanostructure in a 0.9 μ㎡ pixel. The suggested AF pixel requires one pixel for AF function. The plasmonic nanostructure uses metal-insulator-metal (MIM) stack arrays instead of a color filter (CF). The color filters are formed at the subwavelength, and they transmit the specific wavelength of light according to the stack period and incident angles. For the optical analysis of the pixel, a finite-difference time-domain (FDTD) simulation was conducted. The analysis showed that the MIM stack arrays in the pixels perform as an AF pixel. As the primary metric of AF performance, the resulting AF contrasts are 1.8 for the red pixels, 1.6 for green, and 1.5 blue. Based on the simulation results, we confirmed the autofocusing performance of the MIM stack arrays.

Exact Error Rate of Dual-Channel Receiver with Remote Antenna Unit Selection in Multicell Networks

  • Wang, Qing;Liu, Ju;Zheng, Lina;Xiong, Hailiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3585-3601
    • /
    • 2016
  • The error rate performance of circularly distributed antenna system is studied over Nakagami-m fading channels, where a dual-channel receiver is employed for the quadrature phase shift keying signals detection. To mitigate the Co-Channel Interference (CCI) caused by the adjacent cells and to save the transmit power, this work presents remote antenna unit selection transmission based on the best channel quality and the maximized path-loss, respectively. The commonly used Gaussian and Q-function approximation method in which the CCI and the noise are assumed to be Gaussian distributed fails to depict the precise system performance according to the central limit theory. To this end, this work treats the CCI as a random variable with random variance. Since the in-phase and the quadrature components of the CCI are correlated over Nakagami-m fading channels, the dependency between the in-phase and the quadrature components is also considered for the error rate analysis. For the special case of Rayleigh fading in which the dependency between the in-phase and the quadrature components can be ignored, the closed-form error rate expressions are derived. Numerical results validate the accuracy of the theoretical analysis, and a comparison among different transmission schemes is also performed.

A Study on Temperature Measurement for Quenching of Carbon Steel (탄소강 담금질 공정의 온도 측정방법에 대한 고찰)

  • Kim, D.K.;Jung, K.H.;Kang, S.H.;Im, Y.T.
    • Transactions of Materials Processing
    • /
    • v.19 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • To achieve desired microstructure and mechanical property of a manufacturing product, heat treatment process is applied as a secondary process after forging. Especially, quenching process is used for improving strength, hardness, and wear resistance since phase transformation occurs owing to rapid heat transfer from the surface of the specimen. In the present paper, a study on surface temperature measurement for water quenching of eutectoid steel was investigated. In order to determine the temperature history in experiments, three different measuring schemes were used by varying installation techniques of K-type thermocouples. Depending on the measured temperature distribution at the surface of the specimen, convective heat transfer coefficients were numerically determined as a function of temperature by the inverse finite element analysis considering the latent heat generation due to phase transformation. Based on the inversely determined convective heat transfer coefficient, temperature, phase, and hardness distributions in the specimen after water quenching were numerically predicted. By comparing the experimental and computational hardness distribution at three different locations in the specimen, the best temperature measuring scheme was determined. This work clearly demonstrates the effect of temperature measurement on the final mechanical property in terms of hardness distribution.

Process Analysis for Rheology Forming Considering Flow and Solidification Phenomena in Lower Solid Fraction (저고상율 소재의 유동 및 응고현상을 고려한 레올로지 성형공정해석)

  • Jung, Young-Jin;Cho, Ho-Sang;Kang, Chung-Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.156-164
    • /
    • 2001
  • Two-dimensional solidification analysis during rheology forming process of semi-solid aluminum alloy has been studied. Two-phase fluid flow model to investigate the velocity field and temperature distribution is proposed. The proposed mathematical model is applied to the die shape of the two types. To calculate the velocity and temperature fields during rheology forming process, the earth governing equation correspondent to the liquid and solid region are adapted. Therefore, each numerical models considering the solid and liquid region existing within the semi-solid material have been developed to predict the deflect of rheology forming gnarls. The Arbitrary Boundary Maker And Cell (ABMAC) method is employed to solve the two-phase flow model of the Navier-Stokes equation. Theoretical model on the basis of the two-phase flow model is the mixture rule of solid and liquid phases. This approach is based on the liquid and solid viscosity. The liquid viscosity is pure liquid state value, however solid viscosity is considered as a function of the shear rate, solid fraction and power law curves.

  • PDF

The Development of Portable Rotor Bar Fault Diagnosis System for Three Phase Small Induction Motors Using LabVIEW (LaVIEW를 이용한 휴대용 3상 소형유도전동기 회전자 바 고장 진단 시스템 개발)

  • Song, Myung-Hyun;Park, Kyu-Nam;Han, Dong-Gi;Lee, Tae-Hun;Woo, Hyeok-Jae
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.51-55
    • /
    • 2007
  • In this paper, a portable rotor bar fault diagnosis system for small 3 phase induction motors is suggested. For portable real-tine diagnosis system, an USB-DAQ board for collecting the 3 phase current data, three current probes, and a notebook computer are used. The LabVIEW graphical language is used for filtering, analysis, storing, and monitoring the current data. The three phase stator current are filtered and transformed to frequency level by FIT. An analysis window programed by LabVIEW is located in front panel to show the FIT results and this suggested window has a zooming function to detect the fault feature more easily near the feature frequency range which is varying by the slip frequency. To show the possibility of portable rotor bar diagnosis system, three types(healthy, one rotor bar fault, two rotor bar fault) of rotor bar are intentionally prepared and compared by the suggested window of front panel. Experimental results are shown that a suggested diagnosis system is applicable to portable diagnosis system and the rotor bar fault is detected by the frequency window in front panel programed in LabVIEW graphical language.