• Title/Summary/Keyword: Fully implantable hearing devices

Search Result 7, Processing Time 0.019 seconds

Development of Fully-Implantable Middle Ear Hearing Device with Differential Floating Mass Transducer : Current Status

  • Cho Jin-Ho;Park Il-Yong;Lee Sang-Heun
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.5
    • /
    • pp.309-317
    • /
    • 2005
  • It is expected that fully-implantable middle-ear hearing devices (FIMEHDs) will soon be available with the advantages of complete concealment, easy surgical implantation, and low power operation to resolve the problems of semi-implantable middle-ear hearing devices (SIMEHDs) such as discomfort of wearing an external device and replacement of battery. Over the last 3 years, a Korean research team at Kyungpook National University has developed an FIMEHD called ACRHS-1 based on a differential floating mass transducer (DFMT). The main research focus was functional improvement, the establishment of easy surgical procedures for implantation, miniaturization, and a low-power operation. Accordingly, this paper reviews the overall system architecture, functions, and experimental results for ACRHS-1 and its related accessories, including a wireless battery charger and remote controller.

An Adaptive Feedback Canceller for Fully Implantable Hearing Device Using Tympanic Membrane Installed Microphone (고막이식형 마이크로폰을 위한 이식형 인공중이 적응 피드백 제거기 구현)

  • Kim, Tae Yun;Kim, Myoung Nam;Cho, Jin-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.189-199
    • /
    • 2016
  • Many implantable hearing aids are being developed as alternatives to conventional hearing aids which has inconveniences for use and social stigma that make hearing-impaired people avoid to wear it. Particularly, the fully-implantable middle ear hearing devices (F-IMEHD) are being actively studied for mixed or sensorineural hearing impaired people. In development of F-IMEHD, the most difficult problem is improving the performance of implantable microphone. Recently, Cho et al. have studied the tympanic membrane installed microphone which has better sensitivity and is easier to operate on patient than the microphone implanted under the skin. But, it may cause howling problem due to the feedback signal via oval window and ossicle chain from the transducer on round window in the middle ear cavity, therefore, a feedback canceller is necessary. In this paper, we designed NLMS (normalized least mean square) adaptive feedback canceller for F-IMEHD with tympanic membrane installed microphone and a transducer implemented at round window, and computer simulation was performed to verify its operation. The designed adaptive feedback canceller has a delay filter, a 64 point FIR fixed filter and a 8-tap adaptive FIR filter. Computer simulation of the feedback path is modeled by using the data obtained through human cadaver experiment.

Implementation of Wireless Charger with the Function of Auto-Shutdown for fully Implantable Middle Ear Hearing Devices (완전 이식형 인공중이를 위한 자동 충전종료형 무선 충전장치의 구현)

  • Lee, Jang-Woo;Lim, Hyung-Gyu;Jung, Eui-Sung;Han, Ji-Hun;Lee, Seung-Hyun;Park, Il-Yong;Cho, Jin-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.539-548
    • /
    • 2007
  • In the paper, a wireless charger with the function of auto-shutdown for fully implantale middle ear hearing devices (F-IMEHD) has been designed. The wireless charger can communicate with an implant module to be turned off automatically shutdown after an internal rechargeable battery has been fully-charged by electromagnetic coupling using two coils. For the communication with an implant module, the wireless charger uses the load shift keying (LSK) method. But, the variation of the mutual inductance due to the different distance between two coils can cause the communication error in receiving the fully-charged signal from an implant module. To solve the problem, the implemented wireless charger has a variable reference generator for LSK communication. The wireless charger generates proper level of the reference voltage for a comparator using an ADC (analog-to-digital converter) and a DAC (digital-to-analog converter). Through the result of experiment, it has been confirmed that the presented wireless charger can detect signals from implantable module. And wireless charger can stop generating electromagnetic flux after an implanted battery has been fully charged in spite of variable coil distance according to different skin thickness.

Study and Effects of Bone Conducted Signal on the Implantable Microphone (골전도를 통한 생체신호가 이식형 마이크로폰에 미치는 영향 및 고찰)

  • Woo, S.T.;Jung, E.S.;Kim, M.N.;Cho, J.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.4 no.1
    • /
    • pp.29-34
    • /
    • 2010
  • The fully implantable hearing devices (FIHDs) have been studied to compensate the defect of conventional hearing aids. Typically, a microphone for FIHDs was implanted under the skin of the temporal bone. So, implantable microphone characteristics can be affected by the eating food, chattering teeth and moving artifact. In this paper, we fabricated the physical model that was similar to characteristics of human temporal bone and skin, and we measured implanted microphone sensitivity for effect of bone conducted noise signal. For the measurement of microphone sensitivity, we applied 1 kHz pure sounds that were transmitted to implanted microphone and sine wave vibrations of varied frequency were simultaneously transmitted through the artificial bone. As a result, sensitivity of implanted microphone can be modified by bone conducted signal and this phenomenon was confirmed at varied frequency band.

Study on frequency response of implantable microphone and vibrating transducer for the gain compensation of implantable middle ear hearing aid (이식형 마이크로폰과 진동체를 갖는 인공중이의 이득 보상을 위한 주파수 특성 고찰)

  • Jung, Eui-Sung;Seong, Ki-Woong;Lim, Hyung-Gyu;Lee, Jang-Woo;Kim, Dong-Wook;Lee, Jyung-Hyun;Kim, Myoung-Nam;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.361-368
    • /
    • 2010
  • ACROSS device, which is composed of an implantable microphone, a signal processor, and a vibrating transducer, is a fullyimplantable middle ear hearing device(F-IMEHD) for the recovery of patients with hearing loss. And since a microphone is implanted under skin and tissue at the temporal bones, the amplitude of the sound wave is attenuated by absorption and scattering. And the vibrating transducer attached to the ossicular chain caused also the different displacement from characteristic of the stapes. For the gain control of auditory signals, most of implantable hearing devices with the digital audio signal processor still apply to fitting rules of conventional hearing aid without regard to the effect of the implanted microphone and the vibrating transducer. So it should be taken into account the effect of the implantable microphone and the vibrating transducer to use the conventional audio fitting rule. The aim of this study was to measure gain characteristics caused by the implanted microphone and the vibrating transducer attached to the ossicle chains for the gain compensation of ACROSS device. Differential floating mass transducers (DFMT) of ACROSS device were clipped on four cadaver temporal bones. And after placing the DFMT on them, displacements of the ossicle chain with the DFMT operated by 1 $mA_{peak}$ current was measured using laser Doppler vibrometer. And the sensitivity of microphones under the sampled pig skin and the skin of 3 rat back were measured by stimulus of pure tones in frequency from 0.1 to 8.9 kHz. And we confirmed that the microphone implanted under skin showed poorer frequency response in the acoustic high-frequency band than it in the low- to mid- frequency band, and the resonant frequency of the stapes vibration was changed by attaching the DFMT on the incus, the displacement of the DFMT driven with 1 $mA_{rms}$ was higher by the amount of about 20 dB than that of cadaver's stapes driven by the sound presssure of 94 dB SPL in resonance frequency range.

Vibration characteristic analysis of differential floating mass transducer using electrical model for fully-implantable middle ear hearing devices (전기 모델에 의한 완전 이식형 인공중이용 차동 전자 트랜스듀서의 진동 특성 해석)

  • Kim, Min-Woo;Kim, Min-Kyu;Seong, Ki-Woong;Lim, Hyung-Gyu;Jung, Eui-Sung;Han, Ji-Hun;Park, Il-Yong;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.165-173
    • /
    • 2007
  • A differential floating mass transducer has been developed in Korea for fully implantable middle ear hearing devices (F-IMEHDs). In particular, the performance of a differential floating mass transducer (DFMT) is very important among the parts of the F-IMEHDs because the mechanical vibration generated by DFMT is delivered to the inner ear directly. In this paper, the electrical model is proposed to analyze the DFMT vibration characteristic using the mechanical model of the DFMT. The electrical model enables the simple analysis of DFMT vibration characteristics using a computer program. The proposed electrical model is simulated through PSpice as changing the values of passive elements in the electrical model. To verify the proposed model, the DFMT has been implemented on the basis of the simulated results and the experiment for vibration measurement has been carried out. Through the comparison, it is verified that the proposed model is useful to analyze the vibration characteristics of the DFMT.

Implementation a Physical Ear Model for Determinating Location of the Microphone of Fully Implantable Middle Ear Hearing Device (완전 이식형 인공중이용 마이크로폰의 위치 결정을 위한 물리적 귀 모델의 구현)

  • Kim, D.W.;Seong, K.W.;Lim, H.K.;Kim, M.W.;Jung, E.S.;Lee, J.W.;Lee, M.W.;Lee, J.H.;Kim, M.N.;Cho, J.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.2 no.1
    • /
    • pp.27-33
    • /
    • 2009
  • Generally, implantable microphone has been implanted in the temporal bone for implantable middle ear hearing devices (IMEHDs). In this case, the microphone's membrane can be damaged and can be generated biological noise. In order to overcome the these problems, the location of implanted microphone should be changed. As an alternative, the microphone can be implanted in the external auditory canal. However, the sound emission can be produced because of vibration transducer toward reverse direction from the tympanic membrane to the external auditory canal. In this paper, an amount of the emitted sound is measured using a probe microphone as the changing the position of microphone in the external auditory canal of a physical ear model, which is similar to acoustical and vibratory properties of the human ear. Through the measured value, the location of the microphone was assumed in the external auditory canal. According to the analysis, the microphone input sound can be decreased when microphone position become more distance from the tympanic membrane in the auditory canal. However, the external auditory canal is not appropriated to implantable microphone position, because sound emission is not completely eliminated.

  • PDF