• Title/Summary/Keyword: Fully composite

Search Result 290, Processing Time 0.03 seconds

An Automatic Repeating Protocol in Cooperative Spectrum Sharing (협력적 스펙트럼 공유의 자동 반복 프로토콜)

  • Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.6
    • /
    • pp.101-108
    • /
    • 2013
  • In this paper, we propose a method in which the negative acknowledge (NACK) message is used as command for cooperation and spectrum sharing. This allows for an automatic request for cooperation and sharing when the direct link of the primary user is in outage, and also allows for saving the number of control messages in cooperation-spectrum sharing based paradigm. In the sharing phase, the selected relay shares a power fraction of $1-{\alpha}$ for secondary transmitted signal while the remaining of ${\alpha}$ is for primary retransmitted signal. In the case of no relay collected, primary transmitter uses NACK as a command to retransmit the signal with fully power fraction (${\alpha}=1$). Both systems are assumed to employ BPSK signals. In this scheme, we propose the joint optimal decoding in the secondary user. The frame error rate (FER) performance at both systems is then analyzed. The theoretical and simulation results validate the analysis and confirm the efficiency of the protocol.

Automatic Layer-by-layer Dipping System for Functional Thin Film Coatings (다층박막적층법 적용 기능성 박막 코팅을 위한 자동화 시스템)

  • Jang, Wonjun;Kim, Young Seok;Park, Yong Tae
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.314-318
    • /
    • 2019
  • A simple and very flexible automatic dipping machine was constructed for producing functional multilayer films on wide substrates via the layer-by-layer (LbL) assembly technique. The proposed machine exhibits several features that allow a fully automated coating operation, such as various depositing recipes, control of the dipping depth and time, operating speed, and rinsing flow, air-assist drying nozzles, and an operation display. The machine uniformly dips a substrate into aqueous mixtures containing complementary (e.g., oppositely charged, capable of hydrogen bonding, or capable of covalent bonding) species. Between the dipping of each species, the sample is spray cleaned with deionized water and blow-dried with air. The dipping, rinsing, and drying areas and times are adjustable by a computer program. Graphene-based thin films up to ten-bilayers were prepared and characterized. This film exhibits the highly filled multilayer structures and low thermal resistance, indicating that the robotic dipping system is simple to produce functional thin film coatings with a variety of different layers.

The Effects the Composite Differences of the Transferred Vascular Tissues and the Surgical Delay on the Vascularization of the Prefabricated Cutaneous Flap (전위혈관조직의 성상과 외과적 지연처치가 선조작 피부피판의 혈관화에 미치는 효과)

  • Kim, Sang Bum;Won, Chang Hoon;Dhong, Eun Sang;Han, Seung Kyu;Park, Seung Ha;Kim, Woo Kyung;Kim, Young Jo;Lee, Byung Il
    • Archives of Plastic Surgery
    • /
    • v.32 no.3
    • /
    • pp.327-334
    • /
    • 2005
  • This study was designed to investigate the effect of the surgical delay in the prefabricated cutaneous flap. Abdominal skin flaps (n=40), $4.5{\times}6.0cm$ in size, were created by the subcutaneous implantation of a saphenous vascular tissue in the male Sprague-Dawley rats. In the groups 1 and 2, the pedicle was skeletonized. In the groups 3 and 4, perivascular muscle cuff or gracilis fascia was retained, respectively. Six weeks later, each flap was elevated as an island flap and reposed in place. All flaps of the group 2 had a 72-hours of delay period. Five days after the flap repositioning, estimation of flap viability, microangiographies, and histological evaluation of vessel development were performed. The groups 2 and 3 showed higher viability in flap survival. The dilated choke vessels and fully developed vascular network were observed in the flap of the group 2, but not typically seen in the other groups. New vessels around the implanted pedicle were more developed in the group 2. Amount of the vessels in the mid-portion of the flap was significantly increased in the groups 2 and 4. In conclusion, the delay procedure enhanced the viability, and its effect was dependent on the new vessel formation around the implanted pedicle.

Interfacial Damage Sensing and Evaluation of Carbon and SiC Fibers/Epoxy Composites with Fiber-Embedded Angle using Electro-Micromechanical Technique (Electro-Micromechanical시험법을 이용한 섬유 함침 각에 따른 탄소와 SiC 섬유강화 에폭시 복합재료의 계면 손상 감지능 및 평가)

  • Joung-Man Park;Sang-Il Lee;Jin-Woo Kong;Tae-Wook Kim
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.68-73
    • /
    • 2003
  • Interfacial properties and electrical sensing fer fiber fracture in carbon and SiC fibers/epoxy composites were investigated by the electrical resistance measurement and fragmentation test. As fiber-embedded angle increased, the interfacial shear strength (IFSS) of two-type fiber composites decreased, and the elapsed time takes long until the infinity in electrical resistivity. The initial slope of electrical resistivity increased rapidly to the infinity at higher angle, whereas electrical resistivity increased gradually at small angle. Furthermore, both fiber composites with small embedded angle showed a fully-developed stress whitening pattern, whereas both composites with higher embedded angle exhibited a less developed stress whitening pattern. As embedded angle decreased, the gap between the fragments increased and the debonded length was wider for both fiber composites. Electro-micromechanical technique could be a feasible nondestructive evaluation to measure interfacial sensing properties depending on the fiber-embedded angle in conductive fiber reinforced composites.

Incremental dynamic analyses of concrete buildings reinforced with shape memory alloy

  • Mirtaheri, Masoud;Amini, Mehrshad;Khorshidi, Hossein
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.95-105
    • /
    • 2017
  • The use of superelastic shape memory alloys (SMAs) as reinforcements in concrete structures is gradually gaining interest among researchers. Because of different mechanical properties of SMAs compared to the regular steel bars, the use of SMAs as reinforcement in the concrete may change the response of structures under seismic loads. In this study, the effect of SMAs as reinforcement in concrete structures is analytically investigated for 3-, 6- and 8-story reinforced concrete (RC) buildings. For each concrete building, three different reinforcement details are considered: (1) steel reinforcement (Steel) only, (2) SMA bar used in the plastic hinge region of the beams and steel bar in other regions (Steel-SMA), and (3), beams fully reinforced with SMA bar (SMA) and steel bar in other regions. For each case, columns are reinforced with steel bar. Incremental Dynamic Analyses (IDA) are performed using ten different ground motion records to determine the seismic performance of Steel, Steel-SMA and SMA RC buildings. Then fragility curves for each type of RC building by using IDA results for IO, LS and CP performance levels are calculated. Results obtained from the analyses indicate that 3-story frames have approximately the same spectral acceleration corresponding with failure of frames, but in the cases of 6 and 8-story frames, the spectral acceleration is higher in frames equipped with steel reinforcements. Furthermore, the probability of fragility in all frames increases by the building height for all performance levels. Finally, economic evaluation of the three systems are compared.

Effect of the SiC Size on the Thermal and Mechanical Properties of Reaction-bonded Silicon Carbide Ceramics (반응소결 탄화규소 세라믹스의 열물성과 기계적 특성에 미치는 SiC 크기의 영향)

  • Kwon, Chang-Sup;Oh, Yoon-Suk;Lee, Sung-Min;Han, Yoonsoo;Shin, Hyun-Ick;Kim, Youngseok;Kim, Seongwon
    • Journal of Powder Materials
    • /
    • v.21 no.6
    • /
    • pp.467-472
    • /
    • 2014
  • RBSC (reaction-bonded silicon carbide) represents a family of composite ceramics processed by infiltrating with molten silicon into a skeleton of SiC particles and carbon in order to fabricate a fully dense body of silicon carbide. RBSC has been commercially used and widely studied for many years, because of its advantages, such as relatively low temperature for fabrication and easier to form components with near-net-shape and high relative density, compared with other sintering methods. In this study, RBSC was fabricated with different size of SiC in the raw material. Microstructure, thermal and mechanical properties were characterized with the reaction-sintered samples in order to examine the effect of SiC size on the thermal and mechanical properties of RBSC ceramics. Especially, phase volume fraction of each component phase, such as Si, SiC, and C, was evaluated by using an image analyzer. The relationship between microstructures and physical properties was also discussed.

Extracting Modal Parameters of Railway Bridge under the Action of High-speed Train Using TDD Technique (TDD기법을 이용한 고속철도 교량의 동특성 추출)

  • Kim, Byeong Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.761-771
    • /
    • 2008
  • When the crossing frequency of a train meets the natural frequency of a railway bridge, the bridge is bound to become resonant. There are few available time response samples involving a train that passes a bridge at high speed. Very effective modal-parameter extraction techniques for such special high-speed railway bridge conditions are introduced in this paper. Utilizing the cross-correlations of the free-vibration responses after the train passes, mode shapes and the temporal modal parameters (e.g., natural frequency and damping ratio) are extracted using the TDD and SI techniques, respectively. This approach has been applied to a two-span steel composite bridge in the Kyung-Bu high-speed railway system. The estimation results were compared with those obtained using the existing methods. The results fully coincide with those that were extracted using the existing aforementioned technique.

Thermal and Creep Analysis of an Exhaust Duct of Smart UAV with FGM (경사기능재료를 사용한 스마트 무인기 덕트의 열해석과 크리프 해석)

  • Im, Jong-Bin;Park, Jeong-Seon;Yun, Dong-Yeong;Lee, Jeong-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.65-73
    • /
    • 2006
  • The high temperature occurs due to the combustion gas from engine in unmanned aerial vehicles (UAV). The high temperature may cause serious damages in UAV structure. The Functionally Graded Material (FGM) is chosen as a candidate material of the engine duct structure. A functionally graded material (FGM) is a two- component mixture composed by compositional gradient materials from one material to the other. In contrast, traditional composite materials are homogeneous mixtures, and involve compositions between the desirable properties of the component materials. Since significant proportions of an FGM contain the pure form of each material, the need for compromise is eliminated. The properties of both components can be fully utilized. Thermal stress analysis of FGM layers (20, 40, 60, 80 and 100) is performed in this paper. In addition, the creep behavior of FGM applied in duct structure of an engine is analyzed for better understanding of FGM characteristics.

Fabrication of Sintered Compact of Fe-TiB2 Composites by Pressureless Sintering of (FeB+TiH2) Powder Mixture

  • Huynh, Xuan-Khoa;Kim, Ji Soon
    • Journal of Powder Materials
    • /
    • v.23 no.4
    • /
    • pp.282-286
    • /
    • 2016
  • A sintered body of $TiB_2$-reinforced iron matrix composite ($Fe-TiB_2$) is fabricated by pressureless-sintering of a mixture of titanium hydride ($TiH_2$) and iron boride (FeB) powders. The powder mixture is prepared in a planetary ball-mill at 700 rpm for 3 h and then pressurelessly sintered at 1300, 1350 and $1400^{\circ}C$ for 0-2 h. The optimal sintering temperature for high densities (above 95% relative density) is between 1350 and $1400^{\circ}C$, where the holding time can be varied from 0.25 to 2 h. A maximum relative density of 96.0% is obtained from the ($FeB+TiH_2$) powder compacts sintered at $1400^{\circ}C$ for 2 h. Sintered compacts have two main phases of Fe and $TiB_2$ along with traces of TiB, which seems to be formed through the reaction of TiB2 formed at lower temperatures during the heating stage with the excess Ti that is intentionally added to complete the reaction for $TiB_2$ formation. Nearly fully densified sintered compacts show a homogeneous microstructure composed of fine $TiB_2$ particulates with submicron sizes and an Fe-matrix. A maximum hardness of 71.2 HRC is obtained from the specimen sintered at $1400^{\circ}C$ for 0.5 h, which is nearly equivalent to the HRC of conventional WC-Co hardmetals containing 20 wt% Co.

A Study on the Tensile Fracture Behavior of Glass Fiber Polyethylene Composites (GF/PE 복합재료의 인장파괴거동에 관한 연구)

  • 엄윤성;고성위
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.2
    • /
    • pp.158-163
    • /
    • 2003
  • Thermosetting matrix composites have disadvantages in terms of moulding time, repairability and manufacturing cost. Thus the high-performance thermoplastic composites to eliminate such disadvantages have been developed so far. As a result of environmental and economical concerns, there is a growing interest in the use of thermoplastic composites. However, since their mechanical properties are very sensitive to the environment such as moisture, temperature etc., those behaviors need to be studied. Particularly the temperature is a very important factor influencing the mechanical behavior of thermoplastic composites. The effect of temperature have not yet been fully quantified. Since engineering applications of reinforced composites necessitate their fracture mechanic characterization, work is in progress to investigate the fracture and related failure behavior. An approach which predicts the tensile strength was perpormed in the tensile test. The main goal of this work is to study the effect of temperature on the result of tensile test with respect to GF/PE composite. The tensile strength and failure mechanisms of GF/PE composites were investigated in the temperature range 6$0^{\circ}C$ to -5$0^{\circ}C$. The tensile strength increased as the fiber volume fraction ratio increased. The tensile strength showed the maximum at -5$0^{\circ}C$, and it tended to decrease as the temperature increased from -5$0^{\circ}C$. The major failure mechanism was classified into the fiber matrix debonding, the fiber pull-out, the delamination and the matrix deformation.