• Title/Summary/Keyword: Fully automatic

Search Result 256, Processing Time 0.026 seconds

Establishment of automated manufacturing system for high-purity [18F]Sodium fluoride: 3-year production experience

  • Jung, Soonjae;Kim, Jung Young;Han, Sang Jin;Seo, Youngbeom;Lee, Kyo Chul;Ryu, Young Hoon;Choi, Jae Yong
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.5 no.1
    • /
    • pp.48-53
    • /
    • 2019
  • A bone metastasis is an important factor for prognosis and treatment of breast or prostate cancer patients. [$^{18}F$]Sodium fluoride ([$^{18}F$]NaF) is a PET radiopharmaceutical that can detect bone metastasis. Conventional [$^{18}F$]NaF production process included radioactive metal impurities because the product was prepared by adding saline after beam irradiation to $[^{18}O]H_2O$. In this study, we apply the method of removing radionuclidic impurities. To meet the criteria prescribed by GMP in quality control, we designed the custom-made [$^{18}F$]NaF automatic module. The mean radiochemical yield was $82.1{\pm}4.4%$ (n = 32) productions for 3 years) and the total preparation time was 4 min. The final produced [$^{18}F$]NaF solution meets the USP criteria for quality control. Thus, this fully automated system is validated for clinical use.

The Crystal and Molecular Struture of Cholesteryl Isobutyrate

  • Kim, Mi-Hye;Park, Young-Ja;Ahn, Choong-Tai
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.2
    • /
    • pp.177-184
    • /
    • 1989
  • The structure of cholesteryl isobutyrate, $(CH_3)_2CHCOOC_{27}H_{45}$, was determined by single crystal X-ray diffraction methods. Cholesteryl isobutyrate crystallized monoclinic space group $P2_1$, with a = 15.115 (8)${\AA}$, b = 9.636 (5)${\AA}$, c = 20.224 (9)${\AA}$, ${\beta}$ = 93.15 (5)$^{\circ}$, z = 4, $D_c = 1.03 g/cm^3 $and Dm= 1.04 g/$cm^3$. The intensity data were measured for the 3417 reflections, within $sin{\theta}/{\lambda} = 0.59{\AA}^{-1}$, using an automatic four-circle diffractometer and graphite monochromated Mo-$K_{\alpha}$ radiation. The structure was solved by fragment search Patterson methods and direct methods and refined by full-matrix least-squares methods. The final R factor was 0.129 for 2984 observed reflections. The two symmetry-independent molecules (A) and (B) are almost fully extended. The molecules are in antiparallel array forming monolayers with thickness $d_{100}$ = 15.2${\AA}$, and molecular long axes are nearly parallel to the [$\bar{1}$01] directions. The two distinct molecules form separate stacks with almost the same orientations, but with differing degrees of steroid overlap. Thers is a close packing of cholesteryl groups within the monolayers. The packing type is similar to those of cholesteryl hexanoate and cholesteryl oleate.

Protecting Privacy of User Data in Intelligent Transportation Systems

  • Yazed Alsaawy;Ahmad Alkhodre;Adnan Abi Sen
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.163-171
    • /
    • 2023
  • The intelligent transportation system has made a huge leap in the level of human services, which has had a positive impact on the quality of life of users. On the other hand, these services are becoming a new source of risk due to the use of data collected from vehicles, on which intelligent systems rely to create automatic contextual adaptation. Most of the popular privacy protection methods, such as Dummy and obfuscation, cannot be used with many services because of their impact on the accuracy of the service provided itself, they depend on changing the number of vehicles or their physical locations. This research presents a new approach based on the shuffling Nicknames of vehicles. It fully maintains the quality of the service and prevents tracking users permanently, penetrating their privacy, revealing their whereabouts, or discovering additional details about the nature of their behavior and movements. Our approach is based on creating a central Nicknames Pool in the cloud as well as distributed subpools in fog nodes to avoid intelligent delays and overloading of the central architecture. Finally, we will prove by simulation and discussion by examples the superiority of the proposed approach and its ability to adapt to new services and provide an effective level of protection. In the comparison, we will rely on the wellknown privacy criteria: Entropy, Ubiquity, and Performance.

A Study on the Strengthening of Smart Factory Security in OT (Operational Technology) Environment (OT(Operational Technology) 환경에서 스마트팩토리 보안 강화 방안에 관한 연구)

  • Young Ho Kim;Kwang-Kyu Seo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.123-128
    • /
    • 2024
  • Major countries are trying to expand the construction of smart factories by introducing ICT such as the Internet of Things, cloud, and big data into the manufacturing sector to secure national-level manufacturing competitiveness in the era of the 4th industrial revolution. In addition, Germany is pushing for Industry 4.0 to build a fully automatic production system through the Internet of Things, and China is pushing for the expansion of smart factories to enhance the country's industrial competitiveness through Made in China 2025, Japan's intelligent manufacturing system, and the Korean government's manufacturing innovation 3.0. In this study, considering the increasing security connectivity of smart factories, we would like to identify security threats in the external connection part of smart factories and suggest security enhancement measures based on domestic and international standard security models to respond to the identified security threats. Eventually the proposed method can be applied by accurately identifying the smart factory security status, diagnosing vulnerabilities, establishing appropriate improvement plans, and expanding security strategies to respond to security threats.

  • PDF

Development of Landslide Detection Algorithm Using Fully Polarimetric ALOS-2 SAR Data (Fully-Polarimetric ALOS-2 자료를 이용한 산사태 탐지 알고리즘 개발)

  • Kim, Minhwa;Cho, KeunHoo;Park, Sang-Eun;Cho, Jae-Hyoung;Moon, Hyoi;Han, Seung-hoon
    • Economic and Environmental Geology
    • /
    • v.52 no.4
    • /
    • pp.313-322
    • /
    • 2019
  • SAR (Synthetic Aperture Radar) remote sensing data is a very useful tool for near-real-time identification of landslide affected areas that can occur over a large area due to heavy rains or typhoons. This study aims to develop an effective algorithm for automatically delineating landslide areas from the polarimetric SAR data acquired after the landslide event. To detect landslides from SAR observations, reduction of the speckle effects in the estimation of polarimetric SAR parameters and the orthorectification of geometric distortions on sloping terrain are essential processing steps. Based on the experimental analysis, it was found that the IDAN filter can provide a better estimation of the polarimetric parameters. In addition, it was appropriate to apply orthorectification process after estimating polarimetric parameters in the slant range domain. Furthermore, it was found that the polarimetric entropy is the most appropriate parameters among various polarimetric parameters. Based on those analyses, we proposed an automatic landslide detection algorithm using the histogram thresholding of the polarimetric parameters with the aid of terrain slope information. The landslide detection algorithm was applied to the ALOS-2 PALSAR-2 data which observed landslide areas in Japan triggered by Typhoon in September 2011. Experimental results showed that the landslide areas were successfully identified by using the proposed algorithm with a detection rate of about 82% and a false alarm rate of about 3%.

Binary classification of bolts with anti-loosening coating using transfer learning-based CNN (전이학습 기반 CNN을 통한 풀림 방지 코팅 볼트 이진 분류에 관한 연구)

  • Noh, Eunsol;Yi, Sarang;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.651-658
    • /
    • 2021
  • Because bolts with anti-loosening coatings are used mainly for joining safety-related components in automobiles, accurate automatic screening of these coatings is essential to detect defects efficiently. The performance of the convolutional neural network (CNN) used in a previous study [Identification of bolt coating defects using CNN and Grad-CAM] increased with increasing number of data for the analysis of image patterns and characteristics. On the other hand, obtaining the necessary amount of data for coated bolts is difficult, making training time-consuming. In this paper, resorting to the same VGG16 model as in a previous study, transfer learning was applied to decrease the training time and achieve the same or better accuracy with fewer data. The classifier was trained, considering the number of training data for this study and its similarity with ImageNet data. In conjunction with the fully connected layer, the highest accuracy was achieved (95%). To enhance the performance further, the last convolution layer and the classifier were fine-tuned, which resulted in a 2% increase in accuracy (97%). This shows that the learning time can be reduced by transfer learning and fine-tuning while maintaining a high screening accuracy.

Detection of Plastic Greenhouses by Using Deep Learning Model for Aerial Orthoimages (딥러닝 모델을 이용한 항공정사영상의 비닐하우스 탐지)

  • Byunghyun Yoon;Seonkyeong Seong;Jaewan Choi
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.183-192
    • /
    • 2023
  • The remotely sensed data, such as satellite imagery and aerial photos, can be used to extract and detect some objects in the image through image interpretation and processing techniques. Significantly, the possibility for utilizing digital map updating and land monitoring has been increased through automatic object detection since spatial resolution of remotely sensed data has improved and technologies about deep learning have been developed. In this paper, we tried to extract plastic greenhouses into aerial orthophotos by using fully convolutional densely connected convolutional network (FC-DenseNet), one of the representative deep learning models for semantic segmentation. Then, a quantitative analysis of extraction results had performed. Using the farm map of the Ministry of Agriculture, Food and Rural Affairsin Korea, training data was generated by labeling plastic greenhouses into Damyang and Miryang areas. And then, FC-DenseNet was trained through a training dataset. To apply the deep learning model in the remotely sensed imagery, instance norm, which can maintain the spectral characteristics of bands, was used as normalization. In addition, optimal weights for each band were determined by adding attention modules in the deep learning model. In the experiments, it was found that a deep learning model can extract plastic greenhouses. These results can be applied to digital map updating of Farm-map and landcover maps.

PPEditor: Semi-Automatic Annotation Tool for Korean Dependency Structure (PPEditor: 한국어 의존구조 부착을 위한 반자동 말뭉치 구축 도구)

  • Kim Jae-Hoon;Park Eun-Jin
    • The KIPS Transactions:PartB
    • /
    • v.13B no.1 s.104
    • /
    • pp.63-70
    • /
    • 2006
  • In general, a corpus contains lots of linguistic information and is widely used in the field of natural language processing and computational linguistics. The creation of such the corpus, however, is an expensive, labor-intensive and time-consuming work. To alleviate this problem, annotation tools to build corpora with much linguistic information is indispensable. In this paper, we design and implement an annotation tool for establishing a Korean dependency tree-tagged corpus. The most ideal way is to fully automatically create the corpus without annotators' interventions, but as a matter of fact, it is impossible. The proposed tool is semi-automatic like most other annotation tools and is designed to edit errors, which are generated by basic analyzers like part-of-speech tagger and (partial) parser. We also design it to avoid repetitive works while editing the errors and to use it easily and friendly. Using the proposed annotation tool, 10,000 Korean sentences containing over 20 words are annotated with dependency structures. For 2 months, eight annotators have worked every 4 hours a day. We are confident that we can have accurate and consistent annotations as well as reduced labor and time.

Automatic Face and Eyes Detection: A Scale and Rotation Invariant Approach based on Log-Polar Mapping (Log-Polar 사상의 크기와 회전 불변 특성을 이용한 얼굴과 눈 검출)

  • Choi, Il;Chien, Sung-Il
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.8
    • /
    • pp.88-100
    • /
    • 1999
  • Detecting human face and facial landmarks automatically in an image is as essential step to a fully automatic face recognition system. In this paper, we present a new approach to detect automatically face and its eyes of input image with scale and rotation variations of faces by using an intensity based template matching with a single log-polar face template. In a template-based matching it is necessary to normalize the scale changes and rotations of an input image to a template ones. The log-polar mapping which simulates space-variant human visual system converts scale changes and rotations of input image into constant horizontal and cyclic vertical shifts in the output plane. Intelligent use of this property allows us to shift of the candidate log-polar faces mapped at various fixation points of an input image to be matched to a template over the log-polar plane. Thus, the proposed method eliminates the need of adapting multitemplate and multiresolution schemes, which inevitably give rise to intensive computation involved to cope with scale and rotation variations of faces. Through this scale and rotation involved to cope with scale and method can lead to detecting face and its eyes simultaneously. Experimental results on a database of 795 images show over 98% detection rate.

  • PDF

A Study on the Automatic Detection of Railroad Power Lines Using LiDAR Data and RANSAC Algorithm (LiDAR 데이터와 RANSAC 알고리즘을 이용한 철도 전력선 자동탐지에 관한 연구)

  • Jeon, Wang Gyu;Choi, Byoung Gil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.4
    • /
    • pp.331-339
    • /
    • 2013
  • LiDAR has been one of the widely used and important technologies for 3D modeling of ground surface and objects because of its ability to provide dense and accurate range measurement. The objective of this research is to develop a method for automatic detection and modeling of railroad power lines using high density LiDAR data and RANSAC algorithms. For detecting railroad power lines, multi-echoes properties of laser data and shape knowledge of railroad power lines were employed. Cuboid analysis for detecting seed line segments, tracking lines, connecting and labeling are the main processes. For modeling railroad power lines, iterative RANSAC and least square adjustment were carried out to estimate the lines parameters. The validation of the result is very challenging due to the difficulties in determining the actual references on the ground surface. Standard deviations of 8cm and 5cm for x-y and z coordinates, respectively are satisfactory outcomes. In case of completeness, the result of visual inspection shows that all the lines are detected and modeled well as compare with the original point clouds. The overall processes are fully automated and the methods manage any state of railroad wires efficiently.