• Title/Summary/Keyword: Fully Developed Flow

Search Result 452, Processing Time 0.026 seconds

Analysis of Heat Emission from Hot Water Pipe for Greenhouse Heating System Design (온실 난방시스템 설계를 위한 온수난방배관의 방열량 분석)

  • Shin, Hyun-Ho;Nam, Sang-Woon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.204-211
    • /
    • 2019
  • The purpose of this study is to provide basic data for setting environmental design standards for domestic greenhouses. We conducted experiments on thermal environment measurement at two commercial greenhouses where hot water heating system is adopted. We analyzed heat transfer characteristics of hot water heating pipes and heat emission per unit length of heating pipes was presented. The average air temperature in two greenhouses was controlled to $16.3^{\circ}C$ and $14.6^{\circ}C$ during the experiment, respectively. The average water temperature in heating pipes was $52.3^{\circ}C$ and $45.0^{\circ}C$, respectively. Experimental results showed that natural convection heat transfer coefficient of heating pipe surface was in the range of $5.71{\sim}7.49W/m^2^{\circ}C$. When the flow rate in heating pipe was 0.5m/s or more, temperature difference between hot water and pipe surface was not large. Based on this, overall heat transfer coefficient of heating pipe was derived as form of laminar natural convection heat transfer coefficient in the horizontal cylinder. By modifying the equation of overall heat transfer coefficient, a formula for calculating the heat emission per unit length of hot water heating pipe was developed, which uses pipe size and temperature difference between hot water and indoor air as input variables. The results of this study were compared with domestic and foreign data, and it was found to be closest to JGHA data. The data of NAAS, BALLS and ASHRAE were judged to be too large. Therefore, in order to set up environmental design standards for domestic greenhouses, it is necessary to fully examine those data through further experiments.

Analysis of Ice Velocity Variations of Nansen Ice Shelf, East Antarctica, from 2000 to 2017 Using Landsat Multispectral Image Matching (Landsat 다중분광 영상정합을 이용한 동남극 난센 빙붕의 2000-2017년 흐름속도 변화 분석)

  • Han, Hyangsun;Lee, Choon-Ki
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1165-1178
    • /
    • 2018
  • Collapse of an Antarctic ice shelf and its flow velocity changes has the potential to reduce the restraining stress to the seaward flow of the Antarctic Ice Sheet, which can cause sea level rising. In this study, variations in ice velocity from 2000 to 2017 for the Nansen Ice Shelf in East Antarctica that experienced a large-scale collapse in April 2016 were analyzed using Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Landsat-8 Operational Land Imager (OLI) images. To extract ice velocity, image matching based on orientation correlation was applied to the image pairs of blue, green, red, near-infrared, panchromatic, and the first principal component image of the Landsat multispectral data, from which the results were combined. The Landsat multispectral image matching produced reliable ice velocities for at least 14% wider area on the Nansen Ice Shelf than for the case of using single band (i.e., panchromatic) image matching. The ice velocities derived from the Landsat multispectral image matching have the error of $2.1m\;a^{-1}$ compared to the in situ Global Positioning System (GPS) observation data. The region adjacent to the Drygalski Ice Tongue showed the fastest increase in ice velocity between 2000 and 2017. The ice velocity along the central flow line of the Nansen Ice Shelf was stable before 2010 (${\sim}228m\;a^{-1}$). In 2011-2012, when a rift began to develop near the ice front, the ice flow was accelerated (${\sim}255m\;a^{-1}$) but the velocity was only about 11% faster than 2010. Since 2014, the massive rift had been fully developed, and the ice velocity of the upper region of the rift slightly decreased (${\sim}225m\;a^{-1}$) and stabilized. This means that the development of the rift and the resulting collapse of the ice front had little effect on the ice velocity of the Nansen Ice Shelf.

Resonant Characteristics in Rectangular Harbor with Narrow Entrance (2.Effects of Entrance Energy Loss) (개구부가 좁은 직사각형 항만의 공진 특성 (2.항입구 에너지 손실의 영향))

  • 정원무;박우선;서경덕;채장원
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.4
    • /
    • pp.216-230
    • /
    • 1999
  • A Galerkin finite element model for the analysis of harbor oscillation has been developed based on the extended mild-slope equation. Infinite elements are used to accomodate the radiation condition at infinity and joint elements to treat the matching conditions at the harbor entrance which include the energy loss due to flow separation. The numerical tests for rectangular harbors with fully or partially open entrances show that the energy loss at the harbor entrance considerably reduces the the amplification ratios at the innermost parts of the harbors and that the amplification ratios decrease considerably with increasing incident wave heights and jet lengths at the harbor entrance. Application of the model to the Gamcheon harbor show that when the incident wave amplitude is small the amplification ratios rather increase when the entrance energy loss is included than when ignored because of the shift of the resonance periods. Even though the entrance energy loss was insignificant for the measured long-period incident waves, it would be of great importance if the incident waves were large as in the attack of tsunamis. The resonance period of the Helmholtz mode at the Gamcheon Harbor was calculated to be 31 minutes, which agrees well with the measured one between 27 and 33.3 minutes. The measured resonance periods between 9.4 and 12.1 minutes and 5.2 and 6.2 minutes were also calculated by the numerical model as 10.4 minutes and 6.6 or 5.6 minutes, indicating good performance of the model. On the other hand, it was shown that a variety of oscillation modes exists in the Gamcheon Harbor and lateral resonances of considerable amplification ratios also exist at the periods of 3.6 and 1.6 minutes as in the Young-II Bay.

  • PDF

Numerical analysis of solar heat gain on slim-type double-skin window systems - Heat transfer phenomena with opening of windows and vent slot in summer condition - (전산유체 해석을 통한 슬림형 이중외피 창호의 태양열 취득량 분석 - 높은 태양고도 및 하절기 냉방조건에서의 자연환기구 적용 및 창문 조절 방식별 비교 -)

  • Park, Ji-Ho;Oh, Eun-Joo;Cho, Dong-Woo;Cho, Kyung-Joo;Yu, Jung-Yeon
    • KIEAE Journal
    • /
    • v.17 no.1
    • /
    • pp.69-75
    • /
    • 2017
  • Purpose: Heat transfer analysis of recently developed 'slim type double-skin system window' were presented. This window system is designed for curtain wall type façade that main energy loss factor of recent elegant buildings. And the double skin system is the dual window system integrated with inner shading component, enclosed gap space made by two windows when both windows were closed and shading component effectively reflect and terminate solar radiation from outdoor. Usually double-skin system requires much more space than normal window systems but this development has limited by 270mm, facilitated for curtain wall façade buildings. In this study, we estimated thermophysical phenomena of our double-skin curtain wall system window with solar load conditions at the summer season. Method: A fully 3-Dimentional analysis adopted for flow and convective and radiative heat transfer. The commercial CFD package were used to model the surface to surface radiation for opaque solid region of windows' frame, transparent glass, fluid region at inside of double-skin and indoor/outdoor environments. Result: Steep angle of solar incident occur at solar summer conditions. And this steep solar ray cause direct heat absorption from outside of frame surface rather than transmitted through the glass. Moreover, reflection effect of shading unit inside at the double-skin window system was nearly disappeared because of solar incident angle. With this circumstances, double-skin window system effectively cuts the heat transfer from outdoor to indoor due to separation of air space between outdoor and indoor with inner space of double-skin window system.

Heat Transfer Analysis and Experiments of Reinforced Concrete Slabs Using Galerkin Finite Element Method (Galerkin 유한요소법을 이용한 철근콘크리트 슬래브의 열전달해석 및 실험)

  • Han, Byung-Chan;Kim, Yun-Yong;Kwon, Young-Jin;Cho, Chang-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.567-575
    • /
    • 2012
  • A research was conducted to develop a 2-D nonlinear Galerkin finite element analysis of reinforced concrete structures subjected to high temperature with experiments. Algorithms for calculating the closed-form element stiffness for a triangular element with a fully populated material conductance are developed. The validity of the numerical model used in the program is established by comparing the prediction from the computer program with results from full-scale fire resistance tests. Details of fire resistance experiments carried out on reinforced concrete slabs, together with results, are presented. The results obtained from experimental test indicated in that the proposed numerical model and the implemented codes are accurate and reliable. The changes in thermal parameters are discussed from the point of view of changes of structure and chemical composition due to the high temperature exposure. The proposed numerical model takes into account time-varying thermal loads, convection and radiation affected heat fluctuation, and temperature-dependent material properties. Although, this study considered standard fire scenario for reinforced concrete slabs, other time versus temperature relationship can be easily incorporated.

Planning of Extuary Reservoirs for the Development of Water Resources -A Comparative Study of Representation Cases of Korea and Japan- (유역이수의 고도화에 대응하는 하구담수호의 계획론 -한국.일본의 대표적 사례의 비교연구-)

  • 이희영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.1
    • /
    • pp.44-52
    • /
    • 1982
  • Recently, estuary reserovoirs have been actively constructed in Korea and also in Japan there are a large number of estuary reservoirs constructed. But most of the estuary reservoirs are located at the downstream of a river where geographical condition is best for the construction of an enclosing dam. And an effective utilization of water from the estuary reservoir seems to be difficult even if estuary reservoirs are considered to be the water resources the most available for their watershed. Studies on estuary reservoirs so far have been mainly concentrated on the physical and engineering problems of the dam construction itself. The purpose of the present study is to review the estuary reservoir planning in connection with the water resources development and to study a basis of the planning. First, the levels of water use in Korea and Japan were compared with those of other countries in the world. And then, some representative reservoirs were selected to study the roles of a reservoir and water-using conditions in the watershed. Based on the study, a survey was given on the relation between a dam construction upstream and an estuary reservoir construction downstream of a river. Finally, a comprehensive examination was made of the bases of estuary reservoir planning. (1) The estuary reservoir planning is deeply related to the plan for water use develo- pment in the watershed. After the upstream water resources were fully developed up to the most, water reso- urces development by an estuary reservoir should be started. (2) If an estuary lake has a capacity big enough, it can store flood discharge of the watershed without any loss and become a basic facility that will bring about the maxi- mum use of water from the watershed. (3) Estuary reservoirs store water used in the upstream watershed, so recycling of water use is attained by the reservoir. Water in the estuary lake is difficult to be fresh water in its long run. Therefore, estuary reservoir should be located at a place where polluted water is purified and refused. All the planning should be based on the assumption that water in the estuary lake is not fresh but polluted after a long time. (4) The estuary lake can only supply water to the lower basin directly. But the upstream area is benefited from the estuary lake by exchange of irrigation water sources between the lower and the upper area. So a large-scale exchange plan between new and existing water resources is important. By constructing estuary reservoirs and the exchange of water sources between upper and lower areas, the reasonable maximum use of water from the whole watershed is at- tained. (5) The big problem coming from the water resources development by an enclosing estuary is salt water intrusion into the lake. To maintain the estuary lake salt-free, multi-purpose use of the lake should be avoided. It is necessary to take such fundamental measures as abolition of back flow operation of gate, and the closing of the fish port and the fish ladder. The results mentioned above were found in this study and these results of this study could be used for the adequate planning of estuary reservoirs in connection with the maximum water use of the watershed.

  • PDF

A study about the convergent effects of team interaction and team metacognition affecting a continuous participation in learning community of university (팀상호작용과 팀메타인지가 대학생 학습공동체 지속참여에 미치는 융복합적 영향)

  • Roh, Hye-Lan;Choi, Mi-Na
    • Journal of Digital Convergence
    • /
    • v.14 no.4
    • /
    • pp.69-78
    • /
    • 2016
  • The purpose of this study is to analyze convergent effects of team interaction and team metacognition of participants on a continuous participation in the university learning community. We developed 19 items of team interaction and 17 items of team metacognition through literature review. The subjects were 113 students who participated in learning community in A university. The results are as follows. First, team interaction level and team metacognition level can affect a continuous participation in learning community. The higher team interaction is and the lower team metacognition is, the higher continuous participation is. Second, among team interaction factors that affect a continuous participation in learning community, the more number of learning is and the more encouragement of one another is, the higher continuous participation is. But the less participation of members is, the less flow to learning is, and the less learning time is, the lower a continuous participation is. Third, among team metacognition factors that affect a continuous participation in learning community, the more number of learning is, the higher continuous participation is. But the more use of various learning tools is and the more learning time is, the lower continuous participation is. Based on these results, the convergent ways of support for continuous participation in the university learning community are as follows. First, supporting system is needed to induce students to experience the positive atmosphere of learning community by increasing number of learning to facilitate team interaction and urging them to encourage one another. Second, providing the effective utilization method is necessary for students to fully acknowledge the necessity and value of team metacognition activity.

A Numerical Method for Nonlinear Wave-Making Phenomena (비선형 조파현상의 수치해법)

  • Jang-Whan Kim;Kwang-June Bai
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.1
    • /
    • pp.65-72
    • /
    • 1993
  • A numerical method for nonlinear free-surface-wave problem is developed in this paper. The final goal of this study is to simulate the towing tank experiment of a ship model and to partially replace the experiment by the numerical model. The exact problem in the scope of potential flow theory is formulated by a variational principle based on the classical Hamilton's principle. A localized finite element method is used in the present numerical computations which made use of the following two notable steps. The first step is an efficient treatment of the numerical radiation condition by using the intermediate nonlinear-to-linear transition buffer subdomain between the fully nonlinear and linear subdomains. The second is the use of a modal analysis in the final stage of the solution procedures, which enables us to reduce the computation time drastically. With these improvements the present method can treat a much larger computational domain than that was possible previously. A pressure patch on the free surface was chosen as an example. From the present computed results we could investigate the effect of nonlinearity on the down-stream wave pattern more clearly than others, because much larger computational domain was treated. We found, specifically, the widening of the Kelvin angle and the increase of the wave numbers and the magnitude of wave profiles.

  • PDF

Development of Two Dimensional Blade Section with High Efficiency for Marine Propeller (선박 프로펠러용 고효율 2차원 날개단면 개발)

  • Na, Yun-Cheol;Song, In-Haeng;Ahn, Jong-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.11-23
    • /
    • 1997
  • This paper contains a new approach to blade section design method for marine propellers. The hydrodynamic characteristics of 2-D section are highly influenced by its geometrical parameters i.e., thickness and camber distributions and leading edge radius etc. To consider fully turbulent flow field near 2-D section. the finite volume method with k-${\varepsilon}$ turbulent model which solve Reynolds time averaged Navier-Stokes(RANS) equation is applied. In this study, O-type grid system that can provide many calculation points on blade surface is used. The results were compared with those of the experiment of NACA0012 to confirm the accuracy of the developed codes. The goal of this study is the development of a blade section with high efficiency and low drag. To achieve this, we carried out the tests of lift, drag and cavitation characteristics in cavitation tunnel. The results of experiment were compared with numerical results in order to validate the proposed blades design method. By comparing the numerical results with the experiments, we found that the new blade section, KH28 allows superior performance in efficiency and cavitation avoidance characteristics. We further investigated the blade section design method and an application study of this section, KH28 to apply to the marine propeller. In order to improve the accuracy of numerical results on prediction of lift and drag, we conclude here that the 2-layer boundary model must be used.

  • PDF

On the Study of Design Guidelines and a Design Case to Enable the Replacement of LRT Stations by Stops (경전철 역사를 대체하는 정류장 도입을 위해 필요한 설계지침의 도출 및 적용 사례에 관한 연구)

  • Kim, Joo-Uk;Park, Kee-Jun;Lee, Ji-Eon;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3499-3510
    • /
    • 2015
  • To cope with the increased demand on the intra-city transportation by urban rails, the introduction of the light rail transit (LRT) systems has been expedited in Korea due to the possible reduction of both the development and operation costs from adopting LRT systems. The LRT systems have so far been designed, constructed and operated based on the corresponding law and regulations. It has been conceived that fully complying with the existing guidelines may incur some extra costs on LRT. In addition, the present design of LRT stations seems to require unnecessarily long flow of passengers traffic, particularly for disabled people. In this paper, as an approach to solving the aforementioned issues, an introduction of 'LRT stops' has been studied where the stops are similar in concept to bus stops and are intended to replace the stations of a bigger scale in general. Specifically, necessary guidelines for design have been developed by modifying the existing ones to be fit with LRT stops. A design case was also presented to evaluate them. The effective use of the results reported here will provide an opportunity of cost reduction in connection with the construction and operation, and also let people benefit from convenient use of rails, thereby resulting in enhanced transportation welfare.