• Title/Summary/Keyword: Fully Developed Flow

Search Result 450, Processing Time 0.027 seconds

Wind Load Induced Vibration Analysis for Tall Structure (고층건물의 풍하중 유발 진동해석)

  • Kim, Dong-Hyun;Kim, Yu-Sung;Kim, Yo-Han;Kim, Dong-Man;Kim, Jong-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.658-659
    • /
    • 2009
  • In this study, fluid-induced vibration (FIV) analyses have been conducted for tall building structure. In order to investigate the aeroelastic responses of tall building due to wind load, advanced computational analysis system based n computational fluid dynamics(CFD) and computational structural dynamics (CSD) has been developed. Fluid domains are modeled using the computational grid system with local grid deforming technique. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of tall structure for fluid-structure interaction (FSI) problems. Detailed aeroelastic responses and results are presented to show the physical phenomenon of the tall building.

  • PDF

Riser Design Approach for Particle-Circulation-Type Heat Exchangers (입자 순환식 열교환기의 상승관 설계방법)

  • Jun Yong-Du
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.311-312
    • /
    • 2002
  • In this paper a systematic design approach to determine the optimum size (height) of circulating fluidized bed heat exchanger for exhaust gas heat recovery is prososed. Unlike the convensional heat exchangers where the length of the heat exchanger section is not very much emphasized, the vertical length of heat exchanger tube in the case of fluidized bed heat exchangers is important because this length determines the time interval during which particles reside and transfer heat in the heat exchanger section. For particles initial conditions are nearly stationary, accelerating particles motion should be considered rather than simply assuming fully developed condition. A way to estimate optimum tube length at different fluid velocity and particle sizes is suggested based on the required conditioning time for heat transfer from the flue gas to solid particles.

  • PDF

Effects of Rough Surfaces on Heat Transfer in Channel Flow (채널유동에서 거친벽면이 열전달에 미치는 효과)

  • Ahn, S.W.
    • Journal of Power System Engineering
    • /
    • v.5 no.2
    • /
    • pp.30-35
    • /
    • 2001
  • A comparison of fully developed heat transfer and friction factor characteristics has been made in rectangular ducts with one wall roughened by five different shapes. The effects of rib shape geometries and Reynolds number are examined. The rib height-to-duct hydraulic diameter, pitch-to-height ratio, and aspect ratio of channel width to height are fixed at $e/D_e=0.0476$, P/e=8, and W/H=2.33, respectively. To understand the mechanisms of the heat transfer enhancements, the measurements of the friction factors are also conducted in the smooth and rough channels. The data indicate that the triangular type rib has a substantially higher efficiency index than any other ones in the range we studied.

  • PDF

An Experimental Investigation on Combined Convective Heat Transfer of NonNewtonian Fluids (비뉴톤유체의 복합대류 열전달에 관한 실험적 연구)

  • 김용진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1770-1779
    • /
    • 1995
  • A combined convective heat transfer study for non-Newtonian fluids was experimentally performed in uniformly heated horizontal tubes with laminar flow in the thermal entry region. Velocity profiles were fully developed at the entrance of the heated sections in the tubes. Aqueous solutions of sodium carboxymethylcellulose(CMC ) were used; their behavior showed a reasonably good fit into the power-law model, .tau.=K.gamma.$^{n}$ . The test sections were made of copper with inside diameters of 3.23 cm and 5.042 cm and lengths of approximately 300 cm. Most experimental runs displayed noticeable secondary flows caused by buoyancy ; when present, secondary flows caused significant increase in the rate of heat transfer over the purely forced-convection case. A correlation, which relates the rate of heat transfer for flows with temperature-dependent properties, free convection effects, and non-newtonian effects, was suggested.

Experimental Investigation of Heat Transfer Enhancement in a Circular Duct with Circumferential Fins and Circular Disks

  • Taebeom Seo;Byun, Sang-Won;Jung, Myoung-Ryol
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.12
    • /
    • pp.1421-1428
    • /
    • 2000
  • The characteristics of heat transfer and pressure drop for fully developed turbulent flow in a tube with circumferential fins and circular were experimentally studied. The various spacing and sizes of circumferential fins and circular disks were selected as design parameters, while the effects of these parameters on heat transfer enhancement and pressure drop were investigated. In order to quantify the effect of heat transfer enhancement and the increase of pressure drop due to the fins and disks in a tube, the Nusselt numbers and the friction factors for various configurations and operating conditions were compared to those for a corresponding smooth tube. The results showed that the heat transfer rate was significantly enhanced by increasing the height of circumferential fins and decreasing the pitch of circumferential fins. On the other hand, the influence of the disk size and the fin-disk spacing were not significant. Based on the experimental results, a correlation for estimating the Nusselt number was suggested.

  • PDF

Performance Prediction a 10MW-Class Wind Turbine Blade Considering Aeroelastic Deformation Effect (공탄성 변형효과를 고려한 10MW급 풍력발전기 블레이드의 성능해석)

  • Kim, Dong-Hyun;Kim, Yo-Han;Ryu, Gyeong-Joong;Kim, Dong-Hwan;Kim, Su-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.657-662
    • /
    • 2011
  • In this study, aeroelastic performance analyses have been conducted for a 10MW class wind turbine blade model Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed dynamic responsed of wind turbine blade Reynolds-averaged Navier-Stokes (RANS) equations with k-${\omega}$ SST turbulence model are solved for unsteady flow problems of the rotating turbine blade model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems.

  • PDF

Development of an automated system for water-hydraulic and leakage test of pressure vessels

  • Kim, Dong-Soo;Lee, Won-Hee
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.1
    • /
    • pp.55-59
    • /
    • 2004
  • This study developed a fully automated test system for pressure vessels, containing such as oxygen, nitrogen, which is widely used in many industries. The pressure vessel test has three major parts including weight measurement test, water-hydraulic test and leakage test followed by cleaning and drying. The control system for these tests consists of three parts: a PLC, a monitoring system and a database management system. The PLC oversees overall control of test machines, while the monitoring system measures and displays weight, pressure, flow etc. for every situations, and the database management system stores test data. These three modules are designed to communicate with one another at 1 Hz frequency alerting problematic situations to the operator. The system has gone through actual field tests for verification of performances.

New Two - Quadrant Chopper for the DC Series Motor (새로운 직권직류전동기용 2상한 쵸퍼)

  • Hong, Soon-Chan;Oh, Boo-Hong;Seo, Dong-Jo
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.547-551
    • /
    • 1987
  • New chopper circuits for decoupled operation of the dc series motor are presented. These new choppers are capable of controlling field current completely separately, while offering capability of bidirectional armature energy flow. To develop the chopper circuit, with minimum number of switching elements, the complete family of possible conduction circuits are systematically investigated. Then one or two quadrant chopper circuits which offer the desired operations are synthesized from the resulting conduction circuits. Finally, the developed chopper circuits are completely analyzed. The details of operation of the chopper circuits are also fully described.

  • PDF

New Two-Quadrant Chopper for Complete Decoupled Field Control of DC Series Motor (직권 전동기의 완전한 별도 계자제어를 위한 새로운 2상한 쵸퍼)

  • 김은배;홍순찬;김윤호;서동조
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.10
    • /
    • pp.832-839
    • /
    • 1989
  • New chopper circuits for decoupled operation of the dc series motor are presented. These new choppers are capable of controlling field current completely separately, while offering capability of bidirectional armature energy flow. To develop the chopper circuit with minimum number of swithcing elements, the complete family of possible conduction circuits are systematically investigated. Then one or two quadrant chopper circuits which offer the desired operations are synthesized from the resulting conduction circuits. Finally, the developed chopper circuits are analyzed in the steady state. The details of operation of the chopper circuits are also fully described and experimented.

  • PDF

Drag Reduction by Polymer and Surfactant in Tubulent Channel and Pipe Flows (난류 유동일때 관과 channel에서 고분자와 계면활성제에 의한 마찰저항 감소에 관한 연구)

  • Park, S.-R.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.359-365
    • /
    • 1995
  • The drag reduction phenomenon with an additives of surfactant(STAC, stearlytrimethyl ammonium chloride) and polymer(PEO, polyethlene oxide) was investigated in fully developed turbulent pipe and channel flows at various low Reynolds numbers as well as very low additives concentration. A maximum of 70% drag reduction compared with plain water flow was found. This maximum drag reduction percentage obtained with surfactant solution was slightly higher than that of the Virk's asymptote in polymer solution.

  • PDF