• Title/Summary/Keyword: Fully Convolutional Neural Networks

Search Result 39, Processing Time 0.029 seconds

Movie Box-office Prediction using Deep Learning and Feature Selection : Focusing on Multivariate Time Series

  • Byun, Jun-Hyung;Kim, Ji-Ho;Choi, Young-Jin;Lee, Hong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.6
    • /
    • pp.35-47
    • /
    • 2020
  • Box-office prediction is important to movie stakeholders. It is necessary to accurately predict box-office and select important variables. In this paper, we propose a multivariate time series classification and important variable selection method to improve accuracy of predicting the box-office. As a research method, we collected daily data from KOBIS and NAVER for South Korean movies, selected important variables using Random Forest and predicted multivariate time series using Deep Learning. Based on the Korean screen quota system, Deep Learning was used to compare the accuracy of box-office predictions on the 73rd day from movie release with the important variables and entire variables, and the results was tested whether they are statistically significant. As a Deep Learning model, Multi-Layer Perceptron, Fully Convolutional Neural Networks, and Residual Network were used. Among the Deep Learning models, the model using important variables and Residual Network had the highest prediction accuracy at 93%.

Improved Residual Network for Single Image Super Resolution

  • Xu, Yinxiang;Wee, Seungwoo;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.102-105
    • /
    • 2019
  • In the classical single-image super-resolution (SISR) reconstruction method using convolutional neural networks, the extracted features are not fully utilized, and the training time is too long. Aiming at the above problems, we proposed an improved SISR method based on a residual network. Our proposed method uses a feature fusion technology based on improved residual blocks. The advantage of this method is the ability to fully and effectively utilize the features extracted from the shallow layers. In addition, we can see that the feature fusion can adaptively preserve the information from current and previous residual blocks and stabilize the training for deeper network. And we use the global residual learning to make network training easier. The experimental results show that the proposed method gets better performance than classic reconstruction methods.

  • PDF

GAN-based Color Palette Extraction System by Chroma Fine-tuning with Reinforcement Learning

  • Kim, Sanghyuk;Kang, Suk-Ju
    • Journal of Semiconductor Engineering
    • /
    • v.2 no.1
    • /
    • pp.125-129
    • /
    • 2021
  • As the interest of deep learning, techniques to control the color of images in image processing field are evolving together. However, there is no clear standard for color, and it is not easy to find a way to represent only the color itself like the color-palette. In this paper, we propose a novel color palette extraction system by chroma fine-tuning with reinforcement learning. It helps to recognize the color combination to represent an input image. First, we use RGBY images to create feature maps by transferring the backbone network with well-trained model-weight which is verified at super resolution convolutional neural networks. Second, feature maps are trained to 3 fully connected layers for the color-palette generation with a generative adversarial network (GAN). Third, we use the reinforcement learning method which only changes chroma information of the GAN-output by slightly moving each Y component of YCbCr color gamut of pixel values up and down. The proposed method outperforms existing color palette extraction methods as given the accuracy of 0.9140.

Applicability of Image Classification Using Deep Learning in Small Area : Case of Agricultural Lands Using UAV Image (딥러닝을 이용한 소규모 지역의 영상분류 적용성 분석 : UAV 영상을 이용한 농경지를 대상으로)

  • Choi, Seok-Keun;Lee, Soung-Ki;Kang, Yeon-Bin;Seong, Seon-Kyeong;Choi, Do-Yeon;Kim, Gwang-Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • Recently, high-resolution images can be easily acquired using UAV (Unmanned Aerial Vehicle), so that it is possible to produce small area observation and spatial information at low cost. In particular, research on the generation of cover maps in crop production areas is being actively conducted for monitoring the agricultural environment. As a result of comparing classification performance by applying RF(Random Forest), SVM(Support Vector Machine) and CNN(Convolutional Neural Network), deep learning classification method has many advantages in image classification. In particular, land cover classification using satellite images has the advantage of accuracy and time of classification using satellite image data set and pre-trained parameters. However, UAV images have different characteristics such as satellite images and spatial resolution, which makes it difficult to apply them. In order to solve this problem, we conducted a study on the application of deep learning algorithms that can be used for analyzing agricultural lands where UAV data sets and small-scale composite cover exist in Korea. In this study, we applied DeepLab V3 +, FC-DenseNet (Fully Convolutional DenseNets) and FRRN-B (Full-Resolution Residual Networks), the semantic image classification of the state-of-art algorithm, to UAV data set. As a result, DeepLab V3 + and FC-DenseNet have an overall accuracy of 97% and a Kappa coefficient of 0.92, which is higher than the conventional classification. The applicability of the cover classification using UAV images of small areas is shown.

Evaluation of a multi-stage convolutional neural network-based fully automated landmark identification system using cone-beam computed tomography-synthesized posteroanterior cephalometric images

  • Kim, Min-Jung;Liu, Yi;Oh, Song Hee;Ahn, Hyo-Won;Kim, Seong-Hun;Nelson, Gerald
    • The korean journal of orthodontics
    • /
    • v.51 no.2
    • /
    • pp.77-85
    • /
    • 2021
  • Objective: To evaluate the accuracy of a multi-stage convolutional neural network (CNN) model-based automated identification system for posteroanterior (PA) cephalometric landmarks. Methods: The multi-stage CNN model was implemented with a personal computer. A total of 430 PA-cephalograms synthesized from cone-beam computed tomography scans (CBCT-PA) were selected as samples. Twenty-three landmarks used for Tweemac analysis were manually identified on all CBCT-PA images by a single examiner. Intra-examiner reproducibility was confirmed by repeating the identification on 85 randomly selected images, which were subsequently set as test data, with a two-week interval before training. For initial learning stage of the multi-stage CNN model, the data from 345 of 430 CBCT-PA images were used, after which the multi-stage CNN model was tested with previous 85 images. The first manual identification on these 85 images was set as a truth ground. The mean radial error (MRE) and successful detection rate (SDR) were calculated to evaluate the errors in manual identification and artificial intelligence (AI) prediction. Results: The AI showed an average MRE of 2.23 ± 2.02 mm with an SDR of 60.88% for errors of 2 mm or lower. However, in a comparison of the repetitive task, the AI predicted landmarks at the same position, while the MRE for the repeated manual identification was 1.31 ± 0.94 mm. Conclusions: Automated identification for CBCT-synthesized PA cephalometric landmarks did not sufficiently achieve the clinically favorable error range of less than 2 mm. However, AI landmark identification on PA cephalograms showed better consistency than manual identification.

Investigating the Feature Collection for Semantic Segmentation via Single Skip Connection (깊은 신경망에서 단일 중간층 연결을 통한 물체 분할 능력의 심층적 분석)

  • Yim, Jonghwa;Sohn, Kyung-Ah
    • Journal of KIISE
    • /
    • v.44 no.12
    • /
    • pp.1282-1289
    • /
    • 2017
  • Since the study of deep convolutional neural network became prevalent, one of the important discoveries is that a feature map from a convolutional network can be extracted before going into the fully connected layer and can be used as a saliency map for object detection. Furthermore, the model can use features from each different layer for accurate object detection: the features from different layers can have different properties. As the model goes deeper, it has many latent skip connections and feature maps to elaborate object detection. Although there are many intermediate layers that we can use for semantic segmentation through skip connection, still the characteristics of each skip connection and the best skip connection for this task are uncertain. Therefore, in this study, we exhaustively research skip connections of state-of-the-art deep convolutional networks and investigate the characteristics of the features from each intermediate layer. In addition, this study would suggest how to use a recent deep neural network model for semantic segmentation and it would therefore become a cornerstone for later studies with the state-of-the-art network models.

DP-LinkNet: A convolutional network for historical document image binarization

  • Xiong, Wei;Jia, Xiuhong;Yang, Dichun;Ai, Meihui;Li, Lirong;Wang, Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1778-1797
    • /
    • 2021
  • Document image binarization is an important pre-processing step in document analysis and archiving. The state-of-the-art models for document image binarization are variants of encoder-decoder architectures, such as FCN (fully convolutional network) and U-Net. Despite their success, they still suffer from three limitations: (1) reduced feature map resolution due to consecutive strided pooling or convolutions, (2) multiple scales of target objects, and (3) reduced localization accuracy due to the built-in invariance of deep convolutional neural networks (DCNNs). To overcome these three challenges, we propose an improved semantic segmentation model, referred to as DP-LinkNet, which adopts the D-LinkNet architecture as its backbone, with the proposed hybrid dilated convolution (HDC) and spatial pyramid pooling (SPP) modules between the encoder and the decoder. Extensive experiments are conducted on recent document image binarization competition (DIBCO) and handwritten document image binarization competition (H-DIBCO) benchmark datasets. Results show that our proposed DP-LinkNet outperforms other state-of-the-art techniques by a large margin. Our implementation and the pre-trained models are available at https://github.com/beargolden/DP-LinkNet.

Fully Automatic Segmentation of Acute Ischemic Lesions on Diffusion-Weighted Imaging Using Convolutional Neural Networks: Comparison with Conventional Algorithms

  • Ilsang Woo;Areum Lee;Seung Chai Jung;Hyunna Lee;Namkug Kim;Se Jin Cho;Donghyun Kim;Jungbin Lee;Leonard Sunwoo;Dong-Wha Kang
    • Korean Journal of Radiology
    • /
    • v.20 no.8
    • /
    • pp.1275-1284
    • /
    • 2019
  • Objective: To develop algorithms using convolutional neural networks (CNNs) for automatic segmentation of acute ischemic lesions on diffusion-weighted imaging (DWI) and compare them with conventional algorithms, including a thresholding-based segmentation. Materials and Methods: Between September 2005 and August 2015, 429 patients presenting with acute cerebral ischemia (training:validation:test set = 246:89:94) were retrospectively enrolled in this study, which was performed under Institutional Review Board approval. Ground truth segmentations for acute ischemic lesions on DWI were manually drawn under the consensus of two expert radiologists. CNN algorithms were developed using two-dimensional U-Net with squeeze-and-excitation blocks (U-Net) and a DenseNet with squeeze-and-excitation blocks (DenseNet) with squeeze-and-excitation operations for automatic segmentation of acute ischemic lesions on DWI. The CNN algorithms were compared with conventional algorithms based on DWI and the apparent diffusion coefficient (ADC) signal intensity. The performances of the algorithms were assessed using the Dice index with 5-fold cross-validation. The Dice indices were analyzed according to infarct volumes (< 10 mL, ≥ 10 mL), number of infarcts (≤ 5, 6-10, ≥ 11), and b-value of 1000 (b1000) signal intensities (< 50, 50-100, > 100), time intervals to DWI, and DWI protocols. Results: The CNN algorithms were significantly superior to conventional algorithms (p < 0.001). Dice indices for the CNN algorithms were 0.85 for U-Net and DenseNet and 0.86 for an ensemble of U-Net and DenseNet, while the indices were 0.58 for ADC-b1000 and b1000-ADC and 0.52 for the commercial ADC algorithm. The Dice indices for small and large lesions, respectively, were 0.81 and 0.88 with U-Net, 0.80 and 0.88 with DenseNet, and 0.82 and 0.89 with the ensemble of U-Net and DenseNet. The CNN algorithms showed significant differences in Dice indices according to infarct volumes (p < 0.001). Conclusion: The CNN algorithm for automatic segmentation of acute ischemic lesions on DWI achieved Dice indices greater than or equal to 0.85 and showed superior performance to conventional algorithms.

Study of Improved CNN Algorithm for Object Classification Machine Learning of Simple High Resolution Image (고해상도 단순 이미지의 객체 분류 학습모델 구현을 위한 개선된 CNN 알고리즘 연구)

  • Hyeopgeon Lee;Young-Woon Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.1
    • /
    • pp.41-49
    • /
    • 2023
  • A convolutional neural network (CNN) is a representative algorithm for implementing artificial neural networks. CNNs have improved on the issues of rapid increase in calculation amount and low object classification rates, which are associated with a conventional multi-layered fully-connected neural network (FNN). However, because of the rapid development of IT devices, the maximum resolution of images captured by current smartphone and tablet cameras has reached 108 million pixels (MP). Specifically, a traditional CNN algorithm requires a significant cost and time to learn and process simple, high-resolution images. Therefore, this study proposes an improved CNN algorithm for implementing an object classification learning model for simple, high-resolution images. The proposed method alters the adjacency matrix value of the pooling layer's max pooling operation for the CNN algorithm to reduce the high-resolution image learning model's creation time. This study implemented a learning model capable of processing 4, 8, and 12 MP high-resolution images for each altered matrix value. The performance evaluation result showed that the creation time of the learning model implemented with the proposed algorithm decreased by 36.26% for 12 MP images. Compared to the conventional model, the proposed learning model's object recognition accuracy and loss rate were less than 1%, which is within the acceptable error range. Practical verification is necessary through future studies by implementing a learning model with more varied image types and a larger amount of image data than those used in this study.

Object Feature Tracking Algorithm based on Siame-FPN (Siame-FPN기반 객체 특징 추적 알고리즘)

  • Kim, Jong-Chan;Lim, Su-Chang
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.247-256
    • /
    • 2022
  • Visual tracking of selected target objects is fundamental challenging problems in computer vision. Object tracking localize the region of target object with bounding box in the video. We propose a Siam-FPN based custom fully CNN to solve visual tracking problems by regressing the target area in an end-to-end manner. A method of preserving the feature information flow using a feature map connection structure was applied. In this way, information is preserved and emphasized across the network. To regress object region and to classify object, the region proposal network was connected with the Siamese network. The performance of the tracking algorithm was evaluated using the OTB-100 dataset. Success Plot and Precision Plot were used as evaluation matrix. As a result of the experiment, 0.621 in Success Plot and 0.838 in Precision Plot were achieved.