• Title/Summary/Keyword: Full-scale

Search Result 3,019, Processing Time 0.03 seconds

An estimation method of full scale performance for pulling type podded propellers

  • Park, Hyoung-Gil;Choi, Jung-Kyu;Kim, Hyoung-Tae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.965-980
    • /
    • 2014
  • This paper presents a new estimation method of full scale propulsive performance for the pulling type podded propeller. In order to estimate the drag of pod housing, a drag velocity ratio, which includes the effects of podded propeller loading and Reynolds number, is presented and evaluated through the comparison of model test and numerical analysis. By separating the thrust of propeller blade and the drag of pod housing, extrapolation method of pod housing drag to full scale is deduced, and correction method of propeller blade thrust and torque to full scale is presented. This study utilized the drag coefficient ratio of the pod housing as a measure for expanding it to full scale, but in order to increase the accuracy of performance evaluation, additional study is necessary on the method for the full scale expansion via separating the drag of pod body, strut and fin which consist the pod housing.

A 6 m cube in an atmospheric boundary layer flow -Part 1. Full-scale and wind-tunnel results

  • Hoxey, R.P.;Richards, P.J.;Short, J.L.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.165-176
    • /
    • 2002
  • Results of measurements of surface pressure and of velocity field made on a full-scale 6 m cube in natural wind are reported. Comparisons are made with results from boundary-layer wind-tunnel studies reported in the literature. Two flow angles are reported; flow normal to a face of the cube (the $0^{\circ}$ case) and flow at $45^{\circ}$. In most comparisons, the spread of wind-tunnel results of pressure measurements spans the full-scale measurements. The exception to this is for the $0^{\circ}$ case where the roof and side-wall pressures at full-scale are more negative, and as a result of this the leeward wall pressures are also lower. The cause of this difference is postulated to be a Reynolds Number scale effect that affects flow reattachment. Measurements of velocity in the vicinity of the cube have been used to define the mean reattachment point on the roof centre line for the $0^{\circ}$ case, and the ground level reattachment point behind the cube for both $0^{\circ}$ and $45^{\circ}$ flow. Comparisons are reported with another full-scale experiment and also with wind-tunnel experiments that indicate a possible dependency on turbulence levels in the approach flow.

Verification of Propeller-Induced Fluctuating Pressure in Sea Trials (실선에서의 프로펠러 변동압력 성능 검증)

  • Song In-Haeng;Seo Jongsoo;Paik Kwangjun;Jung Jaekwon
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.44-50
    • /
    • 2005
  • Since a cavitation pattern in model scale can be different from that in full scale, it has been highly demanded to measure a fluctuating pressure induced by propeller in full scale. For the verification of the cavitation test for 105K lanker in the large cavitation tunnel in Samsung Ship Model Basin(SSMB), an effective pressure fluctuation measurement system was developed and a series of full scale measurements was carried out. These results were compared with those of cavitation tests in SSMB. The measured results in full scale gave good agreements to those in model tests. The fluctuating pressure at $2^{nd}$ blade frequency in full scale seems to be highly dependent upon tip loading.

  • PDF

Comparative Study of Full-Scale Propeller Cavitation Test and LCT Model Test for MR Tanker (MR Tanker 실선 프로펠러 캐비테이션 시험 및 LCT 모형시험과 비교연구)

  • Ahn, Jong-Woo;Paik, Bu-Geun;Seol, Han-Shin;Park, Young-Ha;Kim, Gun-Do;Kim, Ki-Sup;Jung, Bo-Jun;Choi, Sung-Jun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.3
    • /
    • pp.171-179
    • /
    • 2016
  • In order to study correlation of the propeller cavitation performance between a full-scale ship and a model ship for the MR Tanker, the full-scale ship and the model tests were conducted. The full-scale ship test is composed of cavitation observation, pressure fluctuation and noise measurements, which are conducted using 2 observation windows and 8 pressure transducers installed inside the full-scale ship above the propeller. The model test in the Large Cavitation Tunnel(LCT) was conducted at the same conditions as that of the full-scale ship and its results are compared with those of the full-scale ship. Through the model-ship correlation analysis, it is considered that the experimental technique for the MR Tanker class ship was verified in LCT.

Pressurization Test for Full-scale Static Test of T-50 Aircraft (고등훈련기 전기체 정적시험을 위한 여압시험)

  • Shim, Jae-Yeul;Kim, Tae-Uk;Song, Jae-Chang;Hwang, Gui-Chul;Hwang, In-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1384-1387
    • /
    • 2003
  • Pressurization test is usually required in aircraft full-scale static test. There are several test conditions including pressurization of cockpit, fuselage fuel tank, air inlet duct for T-50 full-scale static test. In this paper, the test conditions, equipment, piping analysis for the pressurization test are introduced. Tank simulation test is performed to verify the validity of piping analysis and to find good tuning parameters for the pressurization channel in the servo controller. Several test setup for pressurization of T-50 test is introduced. Test article volume is filled by form, $60%{\sim}80%$ volume is reduced for the T-50 full-scale static test. Pressurization system is connected to servo controller which also controls hydraulic actuator. Load and pressure control is synchronized by using the same servo controller during T-50 test. Typical control result for pressurization test condition is shown. Pressurization tests of T-50 full-scale static test was completed successfully.

  • PDF

Numerical Simulation of Turbulent Flow around KLNG Hull Form with Different Scale Ratio (다른 축척비를 가진 KLNG 선형주위 유동장 시뮬레이션)

  • Ha, Yoon-Jin;Lee, Young-Gill;Kang, Bong-Han
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.1
    • /
    • pp.8-15
    • /
    • 2014
  • In this study, flow characteristics around the hull form of KLNG are investigated by numerical simulations. The numerical simulations of the turbulent flows with the free surface around KLNG have been carried out at Froude number 0.1964 using the FLUENT 6.3 solver with Reynolds stress turbulence model. Several GEOSIM models are adopted to consider the scale effect attendant on Reynolds number. Furthermore, a full scale ship is calculated and the result is compared with the numerical results of GEOSIM models. The calculated results of GEOSIM models and the full scale ship are compared with the experiment data of MOERI towing tank test and Inha university towing tank test. Moreover, wake distribution on the propeller plane of the full scale ship is estimated using the numerical results of GEOSIM models. The prediction result is directly compared with the simulation result in full scale.

Application of cohesive zone model to large scale circumferential through-wall and 360° surface cracked pipes under static and dynamic loadings

  • Moon, Ji-Hee;Jang, Youn-Young;Huh, Nam-Su;Shim, Do-Jun;Park, Kyoungsoo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.974-987
    • /
    • 2021
  • This paper presents ductile fracture simulation of full-scale cracked pipe for nuclear piping materials using the cohesive zone model (CZM). The main objective of this study is to investigate the applicability of CZM to predict ductile fracture of cracked pipes with various crack shapes and under quasi-static/dynamic loadings. The transferability of the traction-separation (T-S) curve from a small-scale specimen to a full-scale pipe is demonstrated by simulating small- and full-scale tests. T-S curves are calibrated by comparing experimental data of compact tension specimens with finite element analysis results. The calibrated T-S curves are utilized to predict the fracture behavior of cracked pipes. Three types of full-scale pipe tests are considered: pipe with circumferential through-wall crack under quasistatic/dynamic loadings, and with 360° internal surface crack under quasi-static loading. Computational results using the calibrated T-S curves show a good agreement with experimental data, demonstrating the transferability of the T-S curves from small-scale specimen.

Development of a Piping Integrity Evaluation Simulator Based on the Hardware-in-the-Loop Simulation (하드웨어-인-더-루프 기반의 배관 평가 시뮬레이터의 개발)

  • Kim, Yeong-Jin;Heo, Nam-Su;Cha, Heon-Ju;Choe, Jae-Bung;Pyo, Chang-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1031-1038
    • /
    • 2001
  • In order to verify the analytical methods predicting failure behavior of cracked piping, full-scale pipe tests are crucial in nuclear power plant piping. For this reason, series of international test programs have been conducted. However, full-scale pipe tests require expensive testing equipment and long period of testing time. The objective of this paper is to develop a test system which can economically simulate the full-scale pipe test regarding the integrity evaluation. This system provides the failure behavior of cracked pipe by testing a wide-plate specimen. The system provides the failure behavior of cracked pipe by testing a wide-plate specimen. The system was developed for the integrity evaluation of nuclear piping based on the methodology of hardware-in-the-loop (HiL) simulation. Using this simulator, the piping integrity can be evaluated based on the elastic-plastic behavior of full-scale pipe, and the high cost full-scale pipe test may be replaced with this economical system.

An investigation on the effect of the wall treatments in RANS simulations of model and full-scale marine propeller flows

  • Choi, Jung-Kyu;Kim, Hyoung-Tae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.967-987
    • /
    • 2020
  • A numerical analysis is carried out for the marine propellers in open water conditions to investigate the effect of the wall treatments in model and full scale. The standard wall function to apply the low of the wall and the two layer zonal model to calculate the whole boundary layer for a transition phenomenon are used with one turbulence model. To determine an appropriate distance of the first grid point from the wall when using the wall function, a formula based on Reynolds number is suggested, which can estimate the maximum y+ satisfying the logarithmic law. In the model scale, it is confirmed that a transition calculation is required for a model scale propeller with low Reynolds number that the transient region appears widely. While in the full scale, the wall function calculation is recommended for efficient calculations due to the turbulence dominant flow for large Reynolds number.

A study on the effect of flat plate friction resistance on speed performance prediction of full scale

  • Park, Dong-Woo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.195-211
    • /
    • 2015
  • Flat plate friction lines have been used in the process to estimate speed performance of full-scale ships in model tests. The results of the previous studies showed considerable differences in determining form factors depending on changes in plate friction lines and Reynolds numbers. These differences had a great influence on estimation of speed performance of full-scale ships. This study was conducted in two parts. In the first part, the scale effect of the form factor depending on change in the Reynolds number was studied based on CFD, in connection with three kinds of friction resistance curves: the ITTC-1957, the curve proposed by Grigson (1993; 1996), and the curve developed by Katsui et al. (2005). In the second part, change in the form factor by three kinds of friction resistance curves was investtigated based on model tests, and then the brake power and the revolution that were finally determined by expansion processes of full-scale ships. When three kinds of friction resistance curves were applied to each kind of ships, these were investigated: differences between resistance and self-propulsion components induced in the expansion processes of full-scale ships, correlation of effects between these components, and tendency of each kind of ships. Finally, what friction resistance curve was well consistent with results of test operation was examined per each kind of ships.