• Title/Summary/Keyword: Full-scale

Search Result 3,019, Processing Time 0.028 seconds

Study on the Performance of Waterjet Propulsion System for Patrol Boat (해안경비정 물분사 추진기의 성능시험 연구)

  • Jung, Un-Hwa;Kim, Moon-Chan;Lee, Seung-Ho;Shin, Byung-Chul;Lee, Jin-Hee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.178-187
    • /
    • 2010
  • The performance of the waterjet system of a patrol boat has been experimentally studied. A waterjet propulsion system has many advantages comparing with a conventional screw propeller especially for high speed craft because of its good cavitation performance. This paper describes experimental procedure and analysis method of self-propulsion tests with a 1/12-scale model. Experimental results were analyzed according to ITTC 96 standard method. The full-scale effective power and delivered power of the ship were also analyzed and the full-scale speed predicted from the model test compares reasonably with the measured full-scale results of the sea trial.

Wind loading on trees integrated with a building envelope

  • Aly, Aly Mousaad;Fossati, Fabio;Muggiasca, Sara;Argentini, Tommaso;Bitsuamlak, Girma;Franchi, Alberto;Longarini, Nicola;Crespi, Pietro;Chowdhury, Arindam Gan
    • Wind and Structures
    • /
    • v.17 no.1
    • /
    • pp.69-85
    • /
    • 2013
  • With the sustainability movement, vegetated building envelopes are gaining more popularity. This requires special wind effect investigations, both from sustainability and resiliency perspectives. The current paper focuses on wind load estimation on small- and full-scale trees used as part of green roofs and balconies. Small-scale wind load assessment was carried out using a wind tunnel testing in a global-effect study to understand the interference effects from surrounding structures. Full-scale trees were investigated at a large open-jet facility in a local-effect study to account for the wind-tree interaction. The effect of Reynolds number combined with shape change on the overall loads measured at the base of the trees (near the roots) has been investigated by testing at different model-scales and wind speeds. In addition, high-speed tests were conducted to examine the security of the trees in soil and to assess the effectiveness of a proposed structural mitigation system. Results of the current research show that at relatively high wind speeds the load coefficients tend to be reduced, limiting the wind loads on trees. No resonance or vortex shedding was visually observed.

Study on the Performance of Waterjet Propulsion System for 180ton class Fishing Guard Ship (180톤 어업지도선 물분사 추진기의 성능시험 연구)

  • Jung, Un-Hwa;Kim, Moon-Chan;Chun, Ho-Hwan;Lee, Seung-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.2
    • /
    • pp.127-135
    • /
    • 2009
  • The performance of the waterjet system of 180 ton class fishing guard ship has been experimentally studied. A waterjet propulsion system has many advantages in comparison with a conventional screw propeller especially for high speed craft because of its good cavitation performance. Recently waterjet system has been applied to fishing boats and fishing guard ship because of avoiding a net problem although their speeds are not so high. This paper describes experimental procedure and analysis method of resistance and self-propulsion tests with a 1/14.46-scale model. Experimental results were analyzed according to ITTC 96 standard method. The full-scale effective power and delivered power of the ship were also analyzed and the full-scale speed predicted from the model test results shows a good agreement with the full-scale result from the sea trial tests.

CFD validation and grid sensitivity studies of full scale ship self propulsion

  • Jasak, Hrvoje;Vukcevic, Vuko;Gatin, Inno;Lalovic, Igor
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.33-43
    • /
    • 2019
  • A comparison between sea trial measurements and full-scale CFD results is presented for two self-propelled ships. Two ships considered in the present study are: a general cargo carrier at Froude number $F_n=0:182$ and a car carrier at $F_n=0:254$. For the general cargo carrier, the propeller rotation rate is fixed and the achieved speed and trim are compared to sea trials, while for the car carrier, the propeller rotation rate is adjusted to achieve the 80% MCR. In addition, three grids are used for each ship in order to assess the grid refinement sensitivity. All simulations are performed using the Naval Hydro pack based on foam-extend, a community driven fork of the OpenFOAM software. The results demonstrate the possibility of using high-fidelity numerical methods to directly calculate ship scale flow characteristics, including the effects of free surface, non-linearity, turbulence and the interaction between propeller, hull and the flow field.

Full-scale tests and finite element analysis of arched corrugated steel roof under static loads

  • Wang, X.P.;Jiang, C.R.;Li, G.Q.;Wang, S.Y.
    • Steel and Composite Structures
    • /
    • v.7 no.4
    • /
    • pp.339-354
    • /
    • 2007
  • Arched Corrugated Steel Roof (ACSR) is a kind of thin-walled steel shell, composing of arched panels with transverse small corrugations. Four full-scale W666 ACSR samples with 18m and 30m span were tested under full and half span static vertical uniform loads. Displacement, bearing capacities and failure modes of the four samples were measured. The web and bottom flange in ACSR with transverse small corrugations are simplified to anisotropic curved plates, and the equivalent tensile modulus, shear modulus and Poisson's ratio of 18m span ACSR were measured. Two 18 m-span W666 ACSR samples were analyzed with the Finite Element Analysis program ABAQUS. Base on the tests, the limit bearing capacity of ACSR is low, and for half span loading, it is 74-75% compared with the full span loading. When the testing load approached to the limit value, the bottom flange at the sample's bulge place locally buckled first, and then the whole arched roof collapsed suddenly. If the vertical loads apply along the full span, the deformation shape is symmetric, but the overall failure mode is asymmetric. For half span vertical loading, the deformation shape and the overall failure mode of the structure are asymmetric. The ACSR displacement under the vertical loads is large and the structural stiffness is low. There is a little difference between the FEM analysis results and testing data, showing the simplify method of small corrugations in ACSR and the building techniques of FEM models are rational and useful.

Shaking Table Test of Full Scale Parapet Models for the Evaluation of Intensities of Historical Earthquakes (성첩 모델의 진동대 실험과 역사지진의 세기 평가)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.461-467
    • /
    • 2001
  • Shaking table tests were performed with full scale models of stone parapet on the ancient rampart. The objectives of these tests are to study the seismic behavior of the parapet and to obtain quantitative estimation of the intensities of historical earthquakes. Two test models were made based on the structure of the parapet remnant of a mountain fortress in Bukhan-San located in Seoul. Two types of infilling material are considered. The responses to models were tested subjected to three kinds of input motion.

  • PDF

A Experimental Study on Combustion-Stability Rating in a Subscale Chamber (모형 연소실에서 분사기 연소 안정성 평가에 관한 실험적 연구)

  • Kim, Chuljin;Sohn, Chae Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.77-78
    • /
    • 2012
  • To predict combustion instability in actual full-scale combustion chamber of rocket engines, air-injection test is proposed with scaling techniques. From the data, damping factors have been obtained as a function of hydraulic parameter and the data give us instability map. Two instability regions are presented and it is found that they coincide reasonably with them from hot-fire test with full-scale flow rates. Accordingly, the proposed approach can be applied cost-effectively to stability rating of jet injectors when mixing of fuel and oxidizer jets is the dominant process in instability triggering.

  • PDF

Full Scale Model Test on Channel Type PC Bridge (찬넬형 PC교의 실물실험 연구)

  • 구민세;황윤국;조현준;유영찬;김정호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.89-94
    • /
    • 1990
  • This study was performed to verify the behavior of channel type PC bridge through the full scale model test. It is well known that the behavior of connection is especially important in case of precast multi-beam bridges. In this study, the lateral load distribution capacity was found satisfactory and influenced little either by the type or strength of connections. Analysis results agreed well with test results. Parameter studies were performed based on the test and analysis results.

  • PDF

An Experimental Study on the Size Effect influencing to Mechanical Behavior of Reinforced Concrete Structures (철근 콘크리트 구조물의 역학적 거동에 미치는 크기효과에 관한 실험적 연구)

  • Park, Hyun-Soo;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.366-371
    • /
    • 1995
  • it is extremely difficult to perform the dynamic experiments with full-scale specimens. For this reason, small-scale structural models offer an attractive means to peform dynamic loading experiments. The purpose of this reserch is to estabilish the reliance for modeling techniques of small-scale specimens subjected to dynamic cyclic loading. This research focused on the similitude requirements for reinforced concrete frame structures subjected to dynamic cyclic loading. Length scale ratio of specimens were 1:2:4, and six specimens were tested at the frequencies of 0.0025Hz~2.0Hz. It was confirmed that modeling techniques based on the similitude requirements were useful method to evaluate the behavior of full-size R/C structures subjected to earthquake type loading.

  • PDF

Finite Element Based Multi-Scale Ductile Failure Simulation of Full-Scale Pipes with a Circumferential Crack in a Low Carbon Steel (유한요소기반 다중스케일 연성파손모사 기법을 이용한 원주방향 균열이 존재하는 탄소강 실배관의 파손예측 및 검증)

  • Han, Jae-Jun;Bae, Kyung-Dong;Kim, Yun-Jae;Kim, Jong-Hyun;Kim, Nak-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.727-734
    • /
    • 2014
  • This paper describes multi-scale based ductile fracture simulation using finite element (FE) damage analysis. The maximum and crack initiation loads of cracked components were predicted using proposed virtual testing method. To apply the local approach criteria for ductile fracture, stress-modified fracture strain model was adopted as the damage criteria with modified calibration technique that only requires tensile and fracture toughness test data. Element-size-dependent critical damage model is also introduced to apply the proposed ductile fracture simulation to large-scale components. The results of the simulation were compared with those of the tests on SA333 Gr. 6 full-scale pipes at $288^{\circ}C$, performed by the Battelle Memorial Institute.