• 제목/요약/키워드: Full scale model experiment

검색결과 87건 처리시간 0.024초

Experiment and simulation analysis on full scale double-layer concrete shell

  • Thanh Quang Khai Lam;Thi My Dung Do
    • Computers and Concrete
    • /
    • 제31권1호
    • /
    • pp.9-21
    • /
    • 2023
  • The published studies usually used analytical method, numerical methods or experimental method to determine the stress-strain state and displacement of the single-layer or multi-layer curved shell types, but with a small scale model. However, a full scale multi-layer doubly curved concrete shell roof model should be researched. This paper presents the results of the experiment and simulation analysis involving stress-strain state, sliding between layers, the formation and development of the full scale double-layer doubly curved concrete shell roof when this shell begins to crack. The results of the this study have constructed the load-sliding strain relationship; strain diagram; stress diagram in the shell layers; the Nx, Ny membrane force diagram and deflection of shell. Thisresults by experimental method on a full scale model of concrete have clarified the working of multi-layer doubly curved concrete shell roof. The experimental and simulation results are compared with each other and compared with the Sap2000 software.

트롤그물의 기본 성능에 관한 고찰 (Study on the basic efficiency of trawl net)

  • 오택윤;김영승;최석관;배재현;조삼광;박창두;안희춘;신종근;양원석;문대연
    • 수산해양기술연구
    • /
    • 제42권3호
    • /
    • pp.148-157
    • /
    • 2006
  • A model experiment, simulation test using personal computer and real sea trial fishing were carried out to investigate the basic efficiency of bottom trawl net which can be used in the sea mount of North West Pacific, and experimental values were analyzed as the values of full-scale bottom trawl net. Hydrodynamic resistance for the full-scale trawl net according to the Koyama equation was 2.1 times higher than that of simulation and 2.4 times higher than that of model experiment at the average towing velocity. At the 3.5kt's of towing speed, net width of the full-scale trawl net was 2.5% smaller than that of simulation and 8.2% larger than that of model experiment. On the fishing experiment of the full-scale trawl net for the 3.5kt's of average towing speed, average net height of A group(same direction with external force) was 423.5% higher than that of model experiment and 457.1% higher than that of simulation and that of B group(opposite direction with external force) were 283.8% and 306.3% higher than in case of model experiment and Simulation respectively. Net mouth of the full-scale trawl net was 338.1-504.6% higher than those of model experiment and simulation in A group, and 525.2-745.3% higher in B group.

ANALYSIS OF FIRE CHARACTERISTICS IN APARTMENT BUILDING THROUGH FULL SCALE EXPERIMENT AND ZONE MODEL SIMULATION

  • Yoon, Myong-O;Park, Jin-Kook;Kim, Choong-Ik;Ryou, Hong-Sun;Kim, Jin-Gon;Kim, Myung-Bae;Choi, Jun-Seok;Kim, Kwang-Il
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 1997년도 International Symposium on Fire Science and Technology
    • /
    • pp.413-422
    • /
    • 1997
  • Fire characteristics of a typical apartment building in Korea was studied through full scale experiment and zone model simulation. The fire was ignited at the living room and allowed to spread to other parts of a single unit in a five storied apartment building. Various data including temperatures, species concentrations, and images were collected in the experiment. A zone model(CFAST) was used to analyze the same apartment building that represents the average households in Korea. The results were compared with a full scale experiments. While CFAST allows one compartment involved with fire, the experiment allowed the fire to spread to other compartments. Therefore, the comparison between experimental data and Zone-Model data is valid until the living-room fire spread to other parts of the apartment. Flashover occurred at approximately 380 seconds in a fire experiment, and at approximately 420 seconds in Zone-Model. Based on all of data between experimental data and Zone-Model data, it is concluded that the safe escape time is about 250 seconds.

  • PDF

전남 진도지역 낭장망의 유속에 따른 망구형상 변화에 관한 모형실험 (Model test on the net mouth shape of a gape net according to current speeds in Jindo area, Korea)

  • 김성훈;이동길;임지현;박성욱
    • 수산해양기술연구
    • /
    • 제51권1호
    • /
    • pp.146-153
    • /
    • 2015
  • A model net experiment of the gape net for anchovy in Jindo, Jeollanam-do was carried out to investigate the net shape and hydrodynamic resistance using circulating water channel. The model net was made 1/33 down scale by Tauti's similarity method and the range of experimental current speed was from 0.5 knot to 3.5 knot (increasing 0.5 knot interval). The net mouth height in 0.5 knot of the minimum experiment current speed was shown 26.0 cm (full-scale conversion value 8.58 m). The net mouth height and mouth area in 1.5 knot of the same current speed with a gape net fishing ground were shown 20.0 cm (full-scale conversion value : 6.60 m) and about $507.9cm^2$ (full-scale conversion value : $55.31m^2$). The net mouth height and area were decreased with increase the experimental current speed. The hydrodynamic resistance of the model net in 1.5 knot current speed was shown 1.11 kgf and the value of full-scale conversion by Tauti's method was shown 3.996 ton.

A numerical study of scale effects on performance of a tractor type podded propeller

  • Choi, Jung-Kyu;Park, Hyoung-Gil;Kim, Hyoung-Tae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권2호
    • /
    • pp.380-391
    • /
    • 2014
  • In this study, the scale effect on the performance of the podded propeller of tractor type is investigated. Turbulent flow computations are carried out for Reynolds numbers increasing progressively from model scale to full scale using the CFD analysis. The result of the flow calculation for model scale Reynolds numbers agrees well with that of the experiment of a large cavitation tunnel. The existing numerical analysis indicates that the performance of the podded propeller blades is mainly influenced by the advance coefficient and relatively little by the Reynolds number. However, the drag of pod housing with propeller in operation is different from that of pod housing without propeller due to the acceleration and swirl of propeller slipstream which is altered by propeller loading as well as the pressure recovery and friction according to Reynolds number, which suggests that the pod housing drag under the condition of propeller in operation is the key factor of the scale effect on the performance between model and full scale podded propellers. The so called 'drag ratio', which is the ratio of pod housing drag to total thrust of podded propeller, increases as the advance coefficient increases due to accelerated flow in the slipstream of the podded propeller. However, the increasing rate of the drag ratio reduces continuously as the Reynolds number increases from model to full scale progressively. The contribution of hydrodynamic forces, which acts on the parts composed of the pod housing with propeller operating in various loading conditions, to the thrust and the torque of the total propeller unit are presented for a range of Reynolds numbers from model to full scales.

쌍끌이 중층트롤어업의 연구 ( IV ) ( a Study on the Midwater Pair Trawling ( IV )

  • 장충식;이병기
    • 수산해양기술연구
    • /
    • 제32권1호
    • /
    • pp.7-15
    • /
    • 1996
  • Full scale experiment was carried out in the southern sea of Korea to compare some important factors tested in the model experiment. The results obtained can be summarized as follows ; 1. The changing aspect of mouth performance of the full scale net was almost coincided with the results obtained by the model experiment. The vertical opening(H) and the opening area(S) can be expressed as a function of the towing velocity(V) as H=48.78. $e^0.38V$(unit: m, k't) S= 1,443 .$e^-0.25V$(unit: $m^2V$, k't) 2. The changing aspect of working depth of the full scale net was almost coincided with the results obtained by the model experiment. The depth(D) can be expressed as a function of the towing velocity(V) and the warp length(L) as D=92.49.$V^1.37$(unit: m, k't, L= 150m) D= 12.07+0.32. L (unit: m, V=2k't) [)= - 7.90+0.22 . L (unit: m, V=3k't) 3. Some problems were found to operate A - type full scale net by common bottom pair trawlers. The problems can be summarized as follows; (1) Entangling of wing and square head ropes while net casting.(2) Man power needed and time spent for net hauling by common bottom trawlers increased considerably.( 3) Tearing of nettings caused by over -load of tension and entangling of net pendant while net hauling. To solve these problems, the trawlers are favorable to be equipped with variable pitch propeller and llet drum. While the net is favorable to be constructed with trifurcated net pendant in stead of quadrifurcated net pendant used at present.

  • PDF

다른 축척비를 가진 KLNG 선형주위 유동장 시뮬레이션 (Numerical Simulation of Turbulent Flow around KLNG Hull Form with Different Scale Ratio)

  • 하윤진;이영길;강봉한
    • 대한조선학회논문집
    • /
    • 제51권1호
    • /
    • pp.8-15
    • /
    • 2014
  • In this study, flow characteristics around the hull form of KLNG are investigated by numerical simulations. The numerical simulations of the turbulent flows with the free surface around KLNG have been carried out at Froude number 0.1964 using the FLUENT 6.3 solver with Reynolds stress turbulence model. Several GEOSIM models are adopted to consider the scale effect attendant on Reynolds number. Furthermore, a full scale ship is calculated and the result is compared with the numerical results of GEOSIM models. The calculated results of GEOSIM models and the full scale ship are compared with the experiment data of MOERI towing tank test and Inha university towing tank test. Moreover, wake distribution on the propeller plane of the full scale ship is estimated using the numerical results of GEOSIM models. The prediction result is directly compared with the simulation result in full scale.

쌍끌이 중층트롤어법의 연구 ( 1 ) - 모형어구의 망구형상에 관하여 - ( A Study on the Pair Midwater Trawling ( 1 ) - Mouth Performance of the Model Net - )

  • 이병기
    • 수산해양기술연구
    • /
    • 제31권1호
    • /
    • pp.29-44
    • /
    • 1995
  • A model experiment on the pair midwater trawl net applicable to 800 PS class Korean pair bottom trawlers was carried out in the special-prepared experimental thank. the tank was prepared as a reverse trapezoid shape in its vertical section by digging out flat soil. The dimension of the tank showed the 9.6 W$\times$43.0 L(m) of the upper fringe and the 4.8 W$\times$38.0 L(m) of the bottom with 3.0m in depth. The depth of water was maintained 2.7m during experiment. The model net was prepared based on the Tauti's similarity law of fishing gear in 1/30 scale considering the dimension of the experimental tank. Mouth performance of the model net during towing were determined by the photographs taken in front of the net mouth with the combinations of towing velocity, warp length and distance between paired boats. The results obtained can be summarized as follows: 1. Vertical opening of the model nets A and B was varied in the range of 0.18~0.88 m and 0.21~0.78 m (which can be converted into 5.4~26.4m and 6.3~23.4 m in the full-scale net) respectively, and was varied predominantly by towing speed. Vertical opening (H which is appendixed m for the model net. f for the full-scale net. A and B for the types of the model net) can be expressed as the function of towing velocity$V_t$as in the model net $V_t$ : m/ sec)$H_{mA}$=1.67$e^{-1.65V_t}$ $H_{mB}$=1.15$e^{-1.13V_t}$, in the full-scale net ($V_t$ : k't) $H_{fA}$=50.27$e^-0.37V_t$ $H_{fB}$=34.46$e^{-0.26Vt}$. 2. Horizontal opening of the model nets An and b was varied in the range of 1.03~1.54m and 1.04~1.55 m (which can be converted into 30.9~46.2 m and 31.2~46.5m in the full-scale net) respectively, and was varied predominantly by distance between paired boats. Horizontal opening (W, appendixes are as same as the former) an be expressed as the function of distance between paired boats $D_b$as in the model net $W_{mA}$=0.69+0.09$D_b$ $W{mB}$=0.73+0.09$D_b$, in the full-scale net $W_{fA}$=20.81+0.09$D_b$ $W_{fB}$=22.11+0.09$D_b$ 3. Net opening area of the model net A and B was varied in the range of 0.28~1.04 $m^2$ and 0.33~0.94$m^2$(which can be converted into 252~936$m^2$ and 297~846$m^2$ in the full-scale net) respectively, and was varied predominantly by towing velocity. Net opening area ($S$, appendixes are as same as the former) van be expressed as the function of towing velocity$V_t$ as in the model net $v_t$ : m/sec) $S_{Ma}$=2.01$e^{-1.54V_T}$ $S_{mA}$=1.40$e^{-1.65V_t}$, in the full-scale net ($V_t$ : k't) $S_{fA}$=1.807$e^-0.35V_t$ $S_{fA}$=1.265$e^{-0.24V_t}$. 4. Filtering volume of the model nets A and B was varied in the range of 0.32~0.55 $m^3$ and 0.37~0.55$m^3$(which can be converted into 8.640~14.850 $m^3$ and 9.990~14.850$m3$in the full~scale net) respectively, and was predominantly varied by towing speed. filtering volume of the model net-A showed the maximum at the towing speed 0.69 m/sec(3 k't in the full-scale net), compared with that of the model net B showed at 0.92 m/sec(4 k't in the full-scale net).

  • PDF

Development of Wave Overtopping-Overflow Transition Model Based on Full-scale Experiments

  • Mase, Hajime;Kim, Sooyoul;Hasegawa, Makoto;Jeong, Jae-Hoon;Yoon, Jong-Sung
    • 한국해양공학회지
    • /
    • 제34권2호
    • /
    • pp.128-135
    • /
    • 2020
  • When high waves and storm surge strike simultaneously, the characteristics of the fluid field change drastically from overtopping according to the wave runup height to overflow through a transition state that combines overtopping and overflows. However, an estimation model or evaluation method has not yet been established because there is not enough engineering data. This study developed a wave overtopping-overflow transition model based on a full-scale experiment involving wave overtopping and overflow transition, which appropriately reproduced the effect of waves or the temporal change in inundation flow. Using this model to perform a calculation for the wave overtopping and overflow transition process under typical circumstances, this study determined the wave runup height and features of the inundation flow under time series changes as an example.

소형 모형선을 이용한 실선마력추정에 대한 연구 (A Fundamental Study on the Power Prediction Method of Ship by using the Experiment of Small Model)

  • 하윤진;이영길
    • 대한조선학회논문집
    • /
    • 제51권3호
    • /
    • pp.231-238
    • /
    • 2014
  • In this study, the self-propulsion tests are performed in INHA towing tank. And the effective wake characteristics of the KVLCC2 and the KCS models are compared by the experimental results. The form factor is independent of Reynolds number. To estimate the hydrodynamic performance of a full scale ship, the form factor is determined to consider attendant on Reynolds number. In this research, the power predictions are carried out considering the form factor difference of model and full scale ship. The results of this research could be used as one of the fundamental data to the powering performance prediction.