• 제목/요약/키워드: Full analysis method

검색결과 1,515건 처리시간 0.033초

하이브리드 박막/쉘 방법을 이용한 박판성형공정의 스프링백 해석 (Spring-Back Prediction for Sheet Metal Forming Process Using Hybrid Membrane/shell Method)

  • 윤정환;정관수;양동열
    • 소성∙가공
    • /
    • 제12권1호
    • /
    • pp.49-59
    • /
    • 2003
  • To reduce the cost of finite element analyses for sheet forming, a 3D hybrid membrane/shell method has been developed to study the springback of anisotropic sheet metals. In the hybrid method, the bending strains and stresses were analytically calculated as post-processing, using incremental shapes of the sheet obtained previously from the membrane finite element analysis. To calculate springback, a shell finite element model was used to unload the final shape of the sheet obtained from the membrane code and the stresses and strains that were calculated analytically. For verification, the hybrid method was applied to predict the springback of a 2036-T4 aluminum square blank formed into a cylindrical cup. The springback predictions obtained with the hybrid method was in good agreement with results obtained using a full shell model to simulate both loading and unloading and the experimentally measured data. The CPU time saving with the hybrid method, over the full shell model, was 75% for the punch stretching problem.

Analysis Method of Transmission Characterization for Multi-layered Composite Material Based on Homogenization Method

  • Hyun, Se-Young;Song, Yong-Ha;Jeoun, Young-Mi;Kim, Bong-Gyu
    • 항공우주시스템공학회지
    • /
    • 제15권6호
    • /
    • pp.59-65
    • /
    • 2021
  • In this paper, the transmission characteristics of the multi-layered composite material with wire mesh and honeycomb core for aircraft applications have been analyzed with the proposed method. The proposed method converts the conductive wire mesh into effective layer, while for the dielectric honeycomb core, effective permittivity has been derived based on volume fraction with the proposed method. The proposed method has been verified through comparison with full-wave simulation and revealed excellent. In addition, the calculation time of the proposed method is a few order of magnitude faster in comparison with the full-wave simulation.

하이브리드 박막/쉘 방법을 이용한 박판성형공정의 스프링백 해석 (Spring-back prediction for sheet metal forming process using hybrid membrane/shell method)

  • F. Pourboghrat
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.62-65
    • /
    • 1999
  • To reduce the cost of finite element analyses for sheet forming a 3D hybrid membrance/sheel method has been developed to study the springback of anisotropic sheet metals. in the hybrid method the bending strains and stresses were analytically calculated as post-processing using incremental shapes of the sheet obtained previously from the membrane finite element analysis. To calculate springback a shell finite element model was used to unload the final shape of the sheet obtained from the membran code and the stresses and strains that were calculated analytically. For verification the hybrid method was applied to predict the springback of a 2036-T4 aluminum square blank formed into a cylindrical cup. the springback predictions obtained with the hybrid method was in good agreement with results obtained using a full shell model to simulateboth loading an unloading and the experimentally measured data. The CPU time saving with the hybrid method over the full shell model was 75% for the punch stretching problem.

  • PDF

강재지주 전면판 보강토 옹벽의 안정성 평가 (Stability Analysis of Reinforced Retaining Wall with Steel Supported Face)

  • 김기일;김병일;이영생;이순호
    • 대한토목학회논문집
    • /
    • 제31권2C호
    • /
    • pp.75-82
    • /
    • 2011
  • 최근 콘크리트 블록을 전면판으로 주로 사용하고 있는 기존의 블록식 보강토 옹벽과는 달리 경량의 강재를 지주로 이용하여 전면판의 자중을 감소시켜 안정성을 높이고 시공이 쉬운 보강토 공법이 개발되었다. 이 연구에서는 새로 개발된 보강토 옹벽의 안정성을 확인하기 위해 실제 크기의 현장시험을 수행하여 전면판에 발생하는 수평변위, 수평토압, 그리고 옹벽의 침하량 등을 계측기를 이용하여 측정하였다. 또한, 3차원 수치해석을 수행하여 현장시험결과와 수치해석결과를 비교 분석하였다. 현장계측결과 전면판 최대수평변위는 46mm(0.009H), 최대침하량은 21.5mm로 나타나 FHWA 기준을 만족하는 것으로 나타났다. 또한 현장계측결과를 수치해석결과와 비교 분석한 결과 새로운 보강토 공법은 충분한 안정성을 확보하는 것으로 나타났다.

혼합 체적-경계 적분방정식법을 이용한 탄성해석 방법 개발 (Development of an Elastic Analysis Technique Using the Mixed Volume and Boundary Integral Equation Method)

  • 이정기;허강일;진원재
    • 대한기계학회논문집A
    • /
    • 제26권4호
    • /
    • pp.775-786
    • /
    • 2002
  • A Mixed Volume and Boundary Integral Equation Method is applied for the effective analysis of elastic wave scattering problems and plane elastostatic problems in unbounded solids containing general anisotropic inclusions and voids or isotropic inclusions. It should be noted that this newly developed numerical method does not require the Green's function for anisotropic inclusions to solve this class of problems since only Green's function for the unbounded isotropic matrix is involved in their formulation for the analysis. This new method can also be applied to general two-dimensional elastodynamic and elastostatic problems with arbitrary shapes and number of anisotropic inclusions and voids or isotropic inclusions. In the formulation of this method, the continuity condition at each interface is automatically satisfied, and in contrast to finite element methods, where the full domain needs to be discretized, this method requires discretization of the inclusions only. Finally, this method takes full advantage of the pre- and post-processing capabilities developed in FEM and BIEM. Through the analysis of plane elastostatic problems in unbounded isotropic matrix with orthotropic inclusions and voids or isotropic inclusions, and the analysis of plane wave scattering problems in unbounded isotropic matrix with isotropic inclusions and voids, it will be established that this new method is very accurate and effective for solving plane wave scattering problems and plane elastic problems in unbounded solids containing general anisotropic inclusions and voids/cracks or isotropic inclusions.

HVDC 병렬 하프브리지 서브모듈에 대한 고장나무기반의 신뢰성 분석 (Fault-tree based reliability analysis for paralleled half-bridge sub-module of HVDC)

  • 강필순;송성근
    • 전기전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.1218-1223
    • /
    • 2019
  • HVDC 시스템에서 풀-브리지 서브 모듈 구조는 하프브리지 서브 모듈에 비해 부품 수가 증가하지만 100 % 여유율 확보가 가능하여 고장률을 크게 줄일 수 있다. 그러나 풀-브리지 서브 모듈은 여유율 보장과 암(arm) 단락 방지를 위한 데드 타임(dead-time)을 확보하기 위해 복잡한 제어 알고리즘이 필요하다. 이 문제를 해결하기 위해 풀-브리지 서브 모듈과 동일한 부품 수와 100 % 여유율을 갖는 병렬 하프브리지 구성의 고장률을 분석한다. 기존의 부품 고장 분석에 고장나무분석 방법을 적용하여 서브 모듈의 동작 위험을 반영함으로써 서브 모듈의 수명주기를 보다 정확하게 예측할 수 있다. 병렬 하프브리지 서브모듈의 타당성 검증을 위해 FTA 기반 분석 방법과 기존의 PCA 기반 방법으로 분석된 고장률을 비교한다.

AN ITERATIVE METHOD FOR ORTHOGONAL PROJECTIONS OF GENERALIZED INVERSES

  • Srivastava, Shwetabh;Gupta, D.K.
    • Journal of applied mathematics & informatics
    • /
    • 제32권1_2호
    • /
    • pp.61-74
    • /
    • 2014
  • This paper describes an iterative method for orthogonal projections $AA^+$ and $A^+A$ of an arbitrary matrix A, where $A^+$ represents the Moore-Penrose inverse. Convergence analysis along with the first and second order error estimates of the method are investigated. Three numerical examples are worked out to show the efficacy of our work. The first example is on a full rank matrix, whereas the other two are on full rank and rank deficient randomly generated matrices. The results obtained by the method are compared with those obtained by another iterative method. The performance measures in terms of mean CPU time (MCT) and the error bounds for computing orthogonal projections are listed in tables. If $Z_k$, k = 0,1,2,... represents the k-th iterate obtained by our method then the sequence of the traces {trace($Z_k$)} is a monotonically increasing sequence converging to the rank of (A). Also, the sequence of traces {trace($I-Z_k$)} is a monotonically decreasing sequence converging to the nullity of $A^*$.

HIGHER ORDER ITERATIONS FOR MOORE-PENROSE INVERSES

  • Srivastava, Shwetabh;Gupta, D.K.
    • Journal of applied mathematics & informatics
    • /
    • 제32권1_2호
    • /
    • pp.171-184
    • /
    • 2014
  • A higher order iterative method to compute the Moore-Penrose inverses of arbitrary matrices using only the Penrose equation (ii) is developed by extending the iterative method described in [1]. Convergence properties as well as the error estimates of the method are studied. The efficacy of the method is demonstrated by working out four numerical examples, two involving a full rank matrix and an ill-conditioned Hilbert matrix, whereas, the other two involving randomly generated full rank and rank deficient matrices. The performance measures are the number of iterations and CPU time in seconds used by the method. It is observed that the number of iterations always decreases as expected and the CPU time first decreases gradually and then increases with the increase of the order of the method for all examples considered.

철도차량의 승차감 평가법에 의한 시험결과 고찰 (Review of Comparative Test Results of Ride Evaluation for Railway Vehicle)

  • 이창환;이원상;김진태;유완석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(III)
    • /
    • pp.28-35
    • /
    • 2003
  • In this paper, the ride comfort of a passenger coach installed with a KT23 type bogie was measured and evaluated through field test in operation routes. The ride comfort level was evaluated and analysed by ISO method and DIC method that were applied generally at railway fields. Particularly three evaluation methods, i.e., a simple method, a full standing method, and a full seating method of UIC513R standard, were fully applied to evaluate the ride quality. Also the vertical and lateral vibration levels on the floor were evaluated by peak-to-peak analysis method.

  • PDF

실험계획법과 반응표면법을 이용한 효율적인 신뢰도 기법의 개발 (An efficient Reliability Analysis Method Based on The Design of Experiments Augmented by The Response Surface Method)

  • 이상훈;곽병만
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.700-703
    • /
    • 2004
  • A reliability analysis and design procedure based on the design of experiment (DOE) is combined with the response surface method (RSM) for numerical efficiency. The procedure established is based on a 3$^n$ full factorial DOE for numerical quadrature using explicit formula of optimum levels and weights derived for general distributions. The full factorial moment method (FFMM) shows good performance in terms of accuracy and ability to treat non-normally distributed random variables. But, the FFMM becomes very inefficient because the number of function evaluation required increases exponentially as the number of random variables considered increases. To enhance the efficiency, the response surface moment method (RSMM) is proposed. In RSMM, experiments only with high probability are conducted and the rest of data are complemented by a quadratic response surface approximation without mixed terms. The response surface is updated by conducting experiments one by one until the value of failure probability is converged. It is calculated using the Pearson system and the four statistical moments obtained from the experimental data. A measure for checking the relative importance of an experimental point is proposed and named as influence index. During the update of response surface, mixed terms can be added into the formulation.

  • PDF