• 제목/요약/키워드: Fukushima Daiichi

Search Result 87, Processing Time 0.021 seconds

SUGGESTIONS FOR IMPROVMENTS OF THE RADIATION PROTECTION FOR THE EMERGENCY WORKERS DURING THE FUKUSHIMA NUCLEAR POWER PLANT ACCIDENT

  • Khasawneh, Khalid;Cho, Kun-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.2
    • /
    • pp.103-108
    • /
    • 2014
  • Following the emergency work in Fukushima Daiichi nuclear power plant, more attention was paid for the radiation protection of workers working under severe accident condition. The protection procedure for the emergency workers, including the on-site emergency center, the seismic isolated building and the reestablishment of the radiation protection framework were analyzed to investigate drawbacks and deficiencies which led to adverse effects on the emergency planning and on emergency workers' health and comfort. Those drawbacks were identified and studied, and then suggestions were made to enhance the emergency working condition to avoid any future problems during severe accident emergency work and management.

Clonal plant as experimental organisms - DNA mutation rate evaluation in the radiation contaminated area of Fukushima Daiichi NPP accident

  • KANEKO, Shingo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.25-25
    • /
    • 2018
  • The Fukushima Daiichi Nuclear Power Plant accident in March 2011 caused severe radioactive contamination in the surrounding environment. Since the accident, much attention has been paid to the biological and genetic consequences of organism inhabiting the contaminated area. The effect of radiation exposure on genetic mutation rates is little known, especially for low doses and in situ conditions. Evaluating DNA mutation by low levels of radiation dose is difficult due to the rare mutation event and lack of sequence information before the accident. In this study, correlations with air dose levels and somatic DNA mutation rates were evaluated using Next Generation Sequencer for the clonal plant, Phyllostachys edulis. This bamboo is known to spread an identical clone throughout Japan, and it has the advantage that we can compare genetic mutation rate among identical clone growing different air dose levels. We collected 94 samples of P. edulis from 14 sites with air dose rates from $0.04{\sim}7.80{\mu}Gy/h$. Their clonal identity was confirmed by analysis using 24 microsatellite markers, and then, sequences among samples were compared by MIG sequence. The sequence data were obtained from 2,718 loci. About ~200,000 bp sequence (80 bp X 2,718 loci) were obtained for each sample, and this corresponds to about 0.01% of the genome sequence of P. edulis. In these sequences, 442 loci showed polymorphism patterns including recent origin mutation, old mutation, and sequence errors. The number of mutations per sample ranged from 0 to 13, and did not correlate with air dose levels. This result indicated that DNA mutations have not accumulated in P. edulis living in the air doses levels less than $10{\mu}Gy/h$. Our study also suggests that mutation rates can be assessed by selecting an appropriate experimental approach and analyzing with next generation sequencer.

  • PDF

What Can Radiation Protection Experts Contribute to the Issue of the Treated Water Stored in the Damaged Fukushima Daiichi Nuclear Power Plant?

  • Yamaguchi, Ichiro
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.1
    • /
    • pp.24-31
    • /
    • 2021
  • Decommissioning efforts are underway at the reactor where the accident occurred, namely the damaged Tokyo Electric Power Company (TEPCO) Fukushima Daiichi Nuclear Power Plant (FDNPP). However, a large amount of groundwater flowing into the site has become contaminated with radioactive substances and is stored in tanks on site, which has hampered the decommissioning work. Although the inflow of groundwater has been greatly reduced through measures such as the construction of frost walls, approximately 170 ㎥ of water treated by the Advanced Liquid Processing System (ALPS) is being stored in tanks, each day. The tanks used to store this treated water are expected to become full by around the summer of 2022. It is not easy to get people to understand the efforts of all concerned parties, and providing clear information to these concerned parties is also a challenge. Questions have also been raised regarding whether other alternatives have been fully explored in the ALPS subcommittee. Some people have commented that the answers to the questions raised regarding the biological effects of tritium transmutation are inadequate. Some suspect that the answers are too detailed and incomprehensible, and that the respondents may be manipulating the public with some malicious intent. In any case, each possible plan presents both advantages and disadvantages, depending on the people who are involved. That makes it an ethical and vexing issue that can sway decisions, as perspectives change. While the environmental release plan is scientifically safe, it may represent a painful alternative. On the other hand, a more careful and imaginative approach to the idea of continued storage in tanks or other forms of storage may reveal some troublesome hidden disadvantages. Under these circumstances, experts must be prepared to answer people's questions in a comprehensive and robust manner.

Temporal Change in Radiological Environments on Land after the Fukushima Daiichi Nuclear Power Plant Accident

  • Saito, Kimiaki;Mikami, Satoshi;Andoh, Masaki;Matsuda, Norihiro;Kinase, Sakae;Tsuda, Shuichi;Sato, Tetsuro;Seki, Akiyuki;Sanada, Yukihisa;Wainwright-Murakami, Haruko;Yoshimura, Kazuya;Takemiya, Hiroshi;Takahashi, Junko;Kato, Hiroaki;Onda, Yuichi
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.4
    • /
    • pp.128-148
    • /
    • 2019
  • Massive environmental monitoring has been conducted continuously since the Fukushima Daiichi Nuclear Power accident in March of 2011 by different monitoring methods that have different features together with migration studies of radiocesium in diverse environments. These results have clarified the characteristics of radiological environments and their temporal change around the Fukushima site. At three months after the accident, multiple radionuclides including radiostrontium and plutonium were detected in many locations; and it was confirmed that radiocesium was most important from the viewpoint of long-term exposure. Radiation levels around the Fukushima site have decreased greatly over time. The decreasing trend was found to change variously according to local conditions. The air dose rates in environments related to human living have decreased faster than expected from radioactive decay by a factor of 2-3 on average; those in pure forest have decreased more closely to physical decay. The main causes of air dose rate reduction were judged to be radioactive decay, movement of radiocesium in vertical and horizontal directions, and decontamination. Land-use categories and human activities have significantly affected the reduction tendency. Difference in the air dose rate reduction trends can be explained qualitatively according to the knowledge obtained in radiocesium migration studies; whereas, the quantitative explanation for individual sites is an important future challenge. The ecological half-lives of air dose rates have been evaluated by several researchers, and a short-term half-life within 1 year was commonly observed in the studies. An empirical model for predicting air dose rate distribution was developed based on statistical analysis of an extensive car-borne survey dataset, which enabled the prediction with confidence intervals. Different types of contamination maps were integrated to better quantify the spatial data. The obtained data were used for extended studies such as for identifying the main reactor that caused the contamination of arbitrary regions and developing standard procedures for environmental measurement and sampling. Annual external exposure doses for residents who intended to return to their homes were estimated as within a few millisieverts. Different forms of environmental data and knowledge have been provided for wide spectrum of people. Diverse aspects of lessons learned from the Fukushima accident, including practical ones, must be passed on to future generations.

Status of Radiation Dose and Radioactive Contamination due to the Fukushima Accident

  • Baba, Mamoru
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.133-140
    • /
    • 2016
  • Backgrounds: The accident at Fukushima Daiichi Nuclear Power Plant (NPP), March 2011, caused serious radioactive contamination over wide area in east Japan. Therefore, it is important to know the effect of the accident and the status of NPP. Materials and Methods: This paper provides a review on the status of radiation dose and radioactive contamination caused by the accident on the basis of publicized information. Results and Discussion: Monitoring of radiation dose and exposure dose of residents has been conducted extensively by the governments and various organizations. The effective dose of general residents due to the accident proved to be less than a mSv both for external and internal dose. The equivalent committed dose of thyroid was evaluated to be a few mSv in mean value and less than 50 mSv even for children. Monitoring of radioactivity concentration has been carried out on food ingredients, milk and tap water, and actual meal. These studies indicated the percentage of foods above the regulation standard was over 10% in 2011 but decreasing steadily with time. The internal dose due to foods proved to be tens of ${\mu}Sv$ and much less than that due to natural $^{40}K$ even in the Fukushima area and decreasing steadily, although high level concentration is still observed in wild plants, wild mushrooms, animals and some kind of fishes. Conclusion: According to extensive studies, not only the effect of the accident but also the pathway and countermeasures against radioactive contamination have been revealed, and they are applied very effectively for restoration of environment and reconstruction of the area.

Radioactivity data analysis of 137Cs in marine sediments near severely damaged Chernobyl and Fukushima nuclear power plants

  • Song, Ji Hyoun;Kim, TaeJun;Yeon, Jei-Won
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.366-372
    • /
    • 2020
  • Using several accessible published data sets, we analyzed the temporal change of 137Cs radioactivity (per unit mass of sample) in marine sediments and investigated the effect of the water content of sediment on the 137Cs radioactivity, to understand the behavior of 137Cs present in marine environments. The 137Cs radioactivity in sediments decreased more slowly in the Baltic Sea (near the Chernobyl nuclear power plant) than in the ocean near the Fukushima Daiichi nuclear power plant (FDNPP). The 137Cs radioactivity in the sediment near the FDNPP tended to increase as the water content increased, and the water content decreased at certain sampling sites near the FDNPP for several years. Additionally, the decrease in the water content contributed to 51.2% of the average 137Cs radioactivity decrease rate for the same period. Thus, it may be necessary to monitor both the 137Cs radioactivity and the water content for marine sediments to track the 137Cs that was discharged from the sites of Chernobyl and Fukushima nuclear power plants where severe accidents occurred.

Comparison of Environmental Radiation Survey Analysis Results in a High Dose Rate Environment Using CZT, NaI(Tl), and LaBr3(Ce) Detectors

  • Sungyeop Joung;Wanook Ji;Eunjung Lee;Young-Yong Ji;Yoomi Choi
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.543-558
    • /
    • 2023
  • Currently, Japan is undertaking a nationwide project to measure and map radioactive contamination around Fukushima, as part of the efforts to restore normalcy following the nuclear accident. The Japan Atomic Energy Agency (JAEA) manages the Fukushima Environmental Safety Center, located approximately 20 km north of the Fukushima Daiichi nuclear power plant in Minamisōma City, Fukushima Prefecture. In collaboration with the JAEA, this study involved conducting comparison experiments and analyses with radiation detectors in high radiation environments, a challenging task in Korean environments. Environmental radiation surveys were conducted using three types of detectors: CZT, NaI(Tl), and LaBr3(Ce), across two contaminated areas. Dose rate values were converted using dose rate conversion factors for each detector type, and dose rate maps were subsequently created and compared. The detectors yielded similar results, demonstrating their feasibility and reliability in high radiation environments. The findings of this study are expected to be a crucial reference for enhancing the verification and supplementation of procedures and methods in future radiation measurements and mobile surveys in high-radiation environments, using these three types of radiation instruments.

EXPERIMENTAL INVESTIGATIONS RELEVANT FOR HYDROGEN AND FISSION PRODUCT ISSUES RAISED BY THE FUKUSHIMA ACCIDENT

  • GUPTA, SANJEEV
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.11-25
    • /
    • 2015
  • The accident at Japan's Fukushima Daiichi nuclear power plant in March 2011, caused by an earthquake and a subsequent tsunami, resulted in a failure of the power systems that are needed to cool the reactors at the plant. The accident progression in the absence of heat removal systems caused Units 1-3 to undergo fuel melting. Containment pressurization and hydrogen explosions ultimately resulted in the escape of radioactivity from reactor containments into the atmosphere and ocean. Problems in containment venting operation, leakage from primary containment boundary to the reactor building, improper functioning of standby gas treatment system (SGTS), unmitigated hydrogen accumulation in the reactor building were identified as some of the reasons those added-up in the severity of the accident. The Fukushima accident not only initiated worldwide demand for installation of adequate control and mitigation measures to minimize the potential source term to the environment but also advocated assessment of the existing mitigation systems performance behavior under a wide range of postulated accident scenarios. The uncertainty in estimating the released fraction of the radionuclides due to the Fukushima accident also underlined the need for comprehensive understanding of fission product behavior as a function of the thermal hydraulic conditions and the type of gaseous, aqueous, and solid materials available for interaction, e.g., gas components, decontamination paint, aerosols, and water pools. In the light of the Fukushima accident, additional experimental needs identified for hydrogen and fission product issues need to be investigated in an integrated and optimized way. Additionally, as more and more passive safety systems, such as passive autocatalytic recombiners and filtered containment venting systems are being retrofitted in current reactors and also planned for future reactors, identified hydrogen and fission product issues will need to be coupled with the operation of passive safety systems in phenomena oriented and coupled effects experiments. In the present paper, potential hydrogen and fission product issues raised by the Fukushima accident are discussed. The discussion focuses on hydrogen and fission product behavior inside nuclear power plant containments under severe accident conditions. The relevant experimental investigations conducted in the technical scale containment THAI (thermal hydraulics, hydrogen, aerosols, and iodine) test facility (9.2 m high, 3.2 m in diameter, and $60m^3$ volume) are discussed in the light of the Fukushima accident.

EFFORTS TO PROGRESS IN THE HARMONIZATION OF L2 PSA DEVELOPMENT AND THEIR APPLICATIONS IN EUROPE - STATUS OF ACTIVITIES AND PERSPECTIVES AFTER THE FUKUSHIMA ACCIDENT

  • Raimond, E.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.5
    • /
    • pp.453-458
    • /
    • 2012
  • A major issue for all nuclear stakeholders is to keep the probability of circumstances that could lead to core damage as low as possible. In addition, for NPP, appropriate accident management provisions are to be implemented to limit the consequences associated with an accident. Development and application of L2 PSA is a structured way to demonstrate that such objectives are achieved. The paper presents the efforts recently done in Europe to harmonize some best-practices in that field, from research area to risk assessment. The Fukushima Daiichi accident reiterated the importance of these activities and the need to efficiently reinforce the NPP safety based on risk assessment conclusions. New perspectives in Europe are briefly presented.

Performance analysis of the passive safety features of iPOWER under Fukushima-like accident conditions

  • Kang, Sang Hee;Lee, Sang Won;Kang, Hyun Gook
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.676-682
    • /
    • 2019
  • After the Fukushima Daiichi accident, there has been an increasing preference for passive safety features in the nuclear power industry. Some passive safety systems require limited active components to trigger subsequent passive operation. Under very serious accident conditions, passive safety features could be rendered inoperable or damaged. This study evaluates (i) the performance and effectiveness of the passive safety features of iPOWER (innovative Power Reactor), and (ii) whether a severe accident condition could be reached if the passive safety systems are damaged, namely the case of heat exchanger tube rupture. Analysis results show that the reactor coolant system remains in the hot shutdown condition without operator actions or electricity for over 72 h when the passive auxiliary feedwater systems (PAFSs) are operable without damage. However, heat exchanger tube rupture in the PAFS leads to core damage after about 18 h. Such results demonstrate that, to enhance the safety of iPOWER, maintaining the integrity of the PAFS is critical, and therefore additional protections for PAFS are necessary. To improve the reliability of iPOWER, additional battery sets are necessary for the passive safety systems using limited active components for accident mitigation under such extreme circumstances.