• Title/Summary/Keyword: Fuel-NOx

Search Result 933, Processing Time 0.023 seconds

Reducing technology of fuel-NOx generation using fuel-rich/-lean catalytic combustion (연료(燃料) 과농(過濃)/희박(稀薄) 조절(調節)의 촉매연소(觸媒燃燒)에 의한 Fuel-Nox 저감(低減) 기술(技術))

  • Kang, S.K.;Lee, S.J.;Ryu, I.S.;Shin, H.D.;Han, H.S.
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.55-62
    • /
    • 2006
  • A two-step fuel-rich/fuel-lean catalytic combustion seems to be one of the most effective methods to control simultaneously the NO generation and the hydrocarbon (HC) conversion from fuel-bound nitrogen. By controlling equivalent air ratio for maintaining fuel-rich and fuel-lean condition over each catalytic layer, space velocity, inlet temperature, and catalyst component, the HCand ammonia conversion efficiency higher than 95% could be achieved, with ammonia conversion to NO remaining below 5%. The experimental results wouldbe applied to the combustion of land fill gas and to gasified refuse-derived fuels as a method of minimizing NO generation.

  • PDF

Flame Structure and NOx Emission Characteristics in Laminar Partially Premixed $CH_4$/Air Flames;Effect of Premixing Degree (메탄/공기 층류 부분 예혼합화염의 화염구조와 NOx 배출특성;예혼합 인자의 영향)

  • Oh, Jeong-Seog;Jeong, Yong-Ki;Jeon, Chung-Hwan;Chang, Young-June
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.75-81
    • /
    • 2003
  • In this paper, the study of effects of flow variables on flame structure and NOx emission concentration was performed in co-axial laminar partially premixed methane/air flames. the objectives are to reveal its effect as parameters were varied and to understand the correlation between flame structure and NOx emission characteristics in the reaction zone. equivalence ratio(${\Phi}$), fuel split degree(${\sigma}$), and mixing distance(x/D) were defined as a premixing degree and varied within $1.36{\sim}3.17$(equivalence ratio), $50{\sim}100$(fuel split degree), and $5{\sim}20$(mixing distance). the image of $OH{\ast}$ and $CH{\ast}$, and NOx concentration were obtained with an ICCD camera and a NOx analyzer. additionally the maximum intensity location of $OH{\ast}$ chemiluminescence and $CH{\ast}$ chemiluminescence were measured to compare each flame structures. In conclusion flame structure and NOx emission characteristics were changed from diffused to premixed flame when mixing degree was on the increase. the main effect on flame structure and NOx production was at first equivalence ratio(${\Phi}$), and next fuel split degree(${\sigma}$), and finally mixing distance(x/D).

  • PDF

A Study on Combustion And Exhaust Emissions of Diesel Engine -For Gas Oil-Water Emulsified Fuel- (디젤 기관의 연소와 배출물에 관한 연구 -경유-물물의 유화연료 사용시-)

  • 조진호;김형섭;박정률
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.180-188
    • /
    • 1992
  • By means of the compatibility according to solving environmental pollution and energy problem due to the emissions of NOx and smoke from diesel engine this paper experimentally inspected the effect of using emulsified fuel, gas oil-water, for combustion characteristic, that is combustion pressure, pressure rise rate, heat generating rate, the period of ignition delay and specific fuel consumption, and CO, HC, NOx concentration and smoke density. When using emulsified fuel, as a water addition rate was increased, combustion pressure, pressure rise rate and heat generating rate was increased, the period of ignition delay was lengthening, the specific fuel consumption was some what increased in contrast to diesel fuel in low load, but deceased in high load region. And NOx concentration was decreased, CO concentration was increased in low load, but decreased in high load region, HC concentration was increased in contrast to diesel fuel in all region.

Characteristics of UBC and NOx Emission in Air Staging Combustion (공기 다단 연소 기법 적용에 따른 미연탄소분 및 질소산화물 배출특성)

  • Kim, Jeong Woo;Lim, Ho;Go, Young Gun;Jeon, Chung Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.10
    • /
    • pp.637-644
    • /
    • 2016
  • The purpose of this study is to understand the characteristics of unburned carbon (UBC) and NOx emissions for pulverized coal when air staging combustion is applied. A two-staged drop tube furnace capable of applying air staging combustion was designed and installed. The combustion of sub-bituminous (Tanito) has been investigated. UBC and the NOx concentration were measured under various temperatures and stoichiometric ratios in unstaged and staged combustion. As a result, UBC decreased and the NOx concentration increased with an increase in stoichiometric ratio and temperature. In particular, the NOx reduction mechanism was activated when the temperature in the fuel rich zone increased. Both UBC and the NOx concentration decreased as the temperature increased in the fuel rich zone. A high NOx reduction effect was obtained, compared to the UBC increase, when the air staging technique was applied.

Effects on the Characteristics of Exhaust Emissions by using Emulsion Fuel in Diesel Engine (디젤기관에 있어서 에멀젼 연료가 배기배출물 특성에 미치는 영향)

  • Lim, J.K.;Cho, S.G.;Hwang, S.J.;Yoo, D.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.9-10
    • /
    • 2005
  • A study on the combustion and exhaust emissions characteristics by using Emulsion Fuel in Diesel Engine is performed experimentally. In this paper, the experiments are performed at engine speed 1800rpm, emulsion fuel ratio is 0%, 5%, 10%, 15%, 20%, 25%, and main measured items are specific fuel consumption, NOx and Soot emissions etc. The obtained conclusions are as follows. 1) Specific fuel consumption increase maximum 19.8% at low load, but is not effected at full load. 2) NOx emissions decrease 30% in case of emulsion fuel ratio 25% at full load. 3) Soot emission decrease 58.9% in case of emulsion fuel ratio 25% at full load.

  • PDF

Study on Emission Characteristics in a Hydrogen-fueled Engine (수소기관에서의 배기가스에 관한 연구)

  • Cho, U.L.;Ghoi, G.H.;Bae, S.C.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.1
    • /
    • pp.83-89
    • /
    • 2002
  • The goal of this research is to understand the NOx emission in direct injected diesel engine with premixed hydrogen fuel. Hydrogen fuel was supplied into the test engine through the intake pipe. Amount of hydrogen-supplemented fuel was 70 % basis on heating value of the total input fuel. The effects of intake air temperature and exhaust gas recirculation(EGR) on NOx emission were studied. The intake air temperatures were varied from $23^{\circ}C$ to $0^{\circ}C$ by using liquid nitrogen. Also, the exhaust gas was recirculated to the intake manifold and the amount of exhaust gas was controlled by the valve. The major conclusions of this work include: ( i ) nitrogen concentrations in the intake pipe were increased by 30% and cylinder gas temperature was decreased by 24% as the intake air temperature were changed from $23^{\circ}C$ to $0^{\circ}C$; ( ii ) NOx emission per unit heating value of supplied fuel was decreased by 45% with same decrease of intake air temperature; and (iii) NOx emission was decreased by 77% with 30% of EGR ratio. Therefore, it may be concluded that EGR is effective method to lower NOx emission in hydrogen fueled engine.

The Comparison Study on Reburning Effects of LNG and Rice Husk in Heavy Oil Flamed Furnace (중유 화염 연소로에서 LNG와 왕겨분말의 재연소 효과 비교)

  • Shin, Myeung-Chul;Kim, Se-Won;Lee, Chang-Yeop
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.4
    • /
    • pp.25-32
    • /
    • 2009
  • In commercial combustion systems, heavy oil is one of main hydrocarbon fuel because of its economical efficiency. Regarding heavy oil combustion, due to increasing concerns over environmental pollutants such as carbon monoxide, unburned hydrocarbon and nitrogen oxides, development of low pollutant emission methods has become an imminent issue for practical application to numerous combustion devices. Also a great amount of effort has been tried to developed effective methods for practical using of biomass. It is also an important issue to reduce carbon tax. In this paper, an experimental study has been conducted to evaluate the effect of biomass reburning on NOx formation in a heavy oil flamed combustion furnace. Experiments were performed in flames stabilized by a multi-staged burner, which was mounted at the front of the furnace. Experimental tests were conducted using air-carried rice husk powder and LNG as the reburn fuel and heavy oil as the main fuel. The paper reports data on flue gas emissions and temperature distribution in the furnace for several kinds of experimental conditions. NOx concentration in the exhaust has decreased considerably due to effect of reburning. The maximum NOx reduction rate was 62% when the rice husk was used by reburn fuel, however it was 59% when the LNG was used by reburn fuel. The result shows the positive possibility of biomass reburning system for optimal NOx reduction.

  • PDF

Experimental Study on Combustion Characteristics of Porous Ceramic Liquid Fuel Combustor (다공 세라믹 액체 연료 연소기의 연소 특성에 관한 실험적 연구)

  • Chung, K.H.;Lim, I.G.
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.85-93
    • /
    • 1999
  • Experimental study on a porous ceramic liquid fuel combustor is performed. Compact burner with low pollutant emission and high combustion efficiency is realized through the use of porous ceramic materials of high porosities. The use of porous ceramic materials in burner material results in rapid vaporization of liquid fuel and enhancement in mixing process, and thus nearly premixed combustion of liquid fuel is achieved instead of diffusion and partially premixed combustion method, which is often used and apt to produce high pollutant emissions such as CO, NOx and soot. With this enhanced vaporization and premixing method of liquid fuel vapor and air, it is found that enhanced combustion process with intense radiation output and better emission characteristics in NOx, CO and soot emission, compared to other conventional liquid fuel burning method, are possible.

  • PDF

A Study on the Effect of Fuel Injection System on D. I. Diesel Engine (직접분사식 디젤기관의 성능에 미치는 연료 분사계의 영향에 관한 연구)

  • 윤천한;김경훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.80-86
    • /
    • 2002
  • A fuel injection system has an important role in the performance and emission gas in a diesel engine. In this paper, an experimental study has been performed to verify the effect of the performance and the emission gas with the factors such as diameters of an injection nozzle hole, diameters of an injection pipe, and injection timing in the fuel injection system. We have obtained the results that the fuel consumption ratio is reduced and NOx concentration is increased as the smaller diameter of injection nozz1e hole, the smaller diameter of injection pipe, and more advanced injection timing. They show that optimizing the factors of fuel injection system is significant to enhance the performance of the engine system and consumption ratio of fuel, smoke, and NOx.

Influence of changing combustor pressure and secondary fuel injection on flame stabilization and NOx emission (연소실 압력변동과 2차 연료분사가 화염안정화와 NOx 배출에 미치는 영향)

  • Kim, Jong-Ryul;Choi, Gyung-Min;Kim, Duck-Jool
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.128-133
    • /
    • 2006
  • Influence of changing combustor pressure on flame stabilization and nitrogen oxide (NOx) emission in the swirl-stabilized flame with secondary fuel injection was investigated. The combustor pressure was controlled by suction at combustor exit. Pressure index ($P{\ast}=P_{abs}/P_{atm}$), where $P_{abs}$ and $P_{atm}$ indicated the absolute pressure and atmosphere pressure, was controlled in the range of $0.7{\sim}1.3$ for each equivalence ratio conditions. The flammable limits of swirl flames were largely influenced by changing combustor pressure and they showed different tendency compared with laminar flames. Emission index showed maximum value near atmospheric condition and decreased with decreasing pressure index for overall equivalence ratio conditions. R.m.s of pressure fluctuations also showed similar tendency with nitric oxide emission. By injecting secondary fuel into flame zone, the flammable limits were extended significantly. Emission index of nitric oxide and r.m.s. of pressure fluctuations were also controlled by injecting secondary fuel. The swirl flames were somewhat lifted by secondary fuel with high momentum, hence low nitric oxide emission. This NOx reduction technology is applicable to industrial furnaces and air conditioning system by adopting secondary fuel injection.

  • PDF