• Title/Summary/Keyword: Fuel-C

Search Result 2,841, Processing Time 0.034 seconds

A Study on PWM Converter and Inverter Drive System by a Fuel Cell Simulator (연료전지용 Simulator에 의한 PWM 컨버터/인버터 구동시스템에 관한 연구)

  • Gu J.S.;Lee T.W.;Kim J.T.;Won C.Y.;Kim C.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.701-706
    • /
    • 2003
  • Fuel cell is remarkable for one of the clean energy recently. But in the fuel cell case, it has characteristics with low voltage and high current. Therefore, for using domestic power, it should be changed to the power source with commercial voltage and frequency. In this paper fuel cell simulator having electrical characteristics is designed and constructed instead of fuel cell stack. Voltage generated from fuel cell is from 39V to 72V dc and should be boosted to 400v do for home appliances. A stand alone system including the inverter and DC/DC converter for the fuel cell is then proposed. Experimental result is used to support the analysis.

  • PDF

Solid Oxide Fuel Cells Designs, Materials, and Applications

  • Singhal Subhash C.
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.777-786
    • /
    • 2005
  • The Solid Oxide Fuel Cell (SOFC) is an electrochemical device to convert chemical energy of a fuel into electricity at temperatures from about 600 to $1000^{\circ}C$. The SOFC offers certain advantages over lower temperature fuel cells, notably its ability to use CO as a fuel rather than being poisoned by it, and high grade exhaust heat for combined heat and power, or combined cycle gas turbine applications. This paper reviews the operating principle, materials for different cell and stack components, cell designs, and applications of SOFCs. Among all designs of Solid Oxide Fuel Cells (SOFCs), the most progress has been achieved with the tubular design. However, the electrical resistance of tubular SOFCs is high, and specific power output $(W/cm^2)$ and volumetric power density $(W/cm^3)$ low. Planar SOFCs, in contrast, are capable of achieving very high power densities.

Z-Source Inverter with SiC Power Semiconductor Devices for Fuel Cell Vehicle Applications

  • Aghdam, M. Ghasem Hosseini
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.606-611
    • /
    • 2011
  • Power electronics is a key technology for electric, hybrid, plug-in hybrid, and fuel cell vehicles. Typical power electronics converters used in electric drive vehicles include dc/dc converters, inverters, and battery chargers. New semiconductor materials such as silicon carbide (SiC) and novel topologies such as the Z-source inverter (ZSI) have a great deal of potential to improve the overall performance of these vehicles. In this paper, a Z-source inverter for fuel cell vehicle application is examined under three different scenarios. 1. a ZSI with Si IGBT modules, 2. a ZSI with hybrid modules, Si IGBTs/SiC Schottky diodes, and 3. a ZSI with SiC MOSFETs/SiC Schottky diodes. Then, a comparison of the three scenarios is conducted. Conduction loss, switching loss, reverse recovery loss, and efficiency are considered for comparison. A conclusion is drawn that the SiC devices can improve the inverter and inverter-motor efficiency, and reduce the system size and cost due to the low loss properties of SiC devices. A comparison between a ZSI and traditional PWM inverters with SiC devices is also presented in this paper. Based on this comparison, the Z-source inverter produces the highest efficiency.

TSPA 2006 and Its Implication

  • Hwang, Y.;Kang, C.H.;Lee, Y.M.;Jeong, M.S.;Lee, S.H.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2007.05a
    • /
    • pp.105-106
    • /
    • 2007
  • PDF

A Non-Pt Catalyst for Improved Oxygen Reduction Reaction in Microbial Fuel Cells

  • Kim, Jy-Yeon;Han, Sang-Beom;Oh, Sang-Eun;Park, Kyung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.2
    • /
    • pp.71-76
    • /
    • 2011
  • Fe-tetramethoxyphenylporphyrin on carbon black (Fe-TMPP/C) is examined and compared with carbon (C) and Pt-coated carbon (Pt/C) for oxygen reduction reaction in a two chambered microbial fuel cell (MFC). The Fe-TMPP/C is prepared by heat treatment and characterized using SEM, TEM, and XPS. The electrochemical properties of catalysts are characterized by voltammerty and single cell measurements. It is found that the power generation in the MFC with Fe-TMPP/C as the cathode is higher than that with Pt/C. The maximum power of the Fe-TMPP/C is 0.12 mW compared with 0.10 mW (Pt/C) and 0.02 mW (C). This high output with the Fe-TMPP/C indicates that MFCs are promising in further practical applications with low cost macrocycles catalysts.

Effects of Oxidant Addition to Fuel on Soot Formation of Laminar Diffusion Flames (동축류 확산화염의 매연생성에 미치는 연료에 첨가된 산화제의 영향)

  • Lee, Won-Nam
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.1
    • /
    • pp.11-19
    • /
    • 1998
  • The influence of oxidant addition on soot formation is investigated experimentally with ethylene, propane and mixture fuel co-flow diffusion flames. Oxidant addition into fuel shows the increase of integrated soot volume fractions for ethylene, ethylene/ethane and ethylene/methane mixture flames. However, the increase of integrated soot volume fraction with oxidant addition was not significant for propane and ethylene/propane mixture flames. This discrepancy is explained with $C_2\;and\;C_3$ chemistry at the early stage of soot formation process. The oxidant addition increases the concentration of $C_3H_3$ in the soot formation region, and therefore, enhances soot formation process. A new soot formation rate model that includes both dilution effect and chemical effect of oxygen is suggested to interpret the increase of integrated soot volume fractions with oxidant addition into ethylene. Also, the role of adiabatic flame temperature for the chemical effect of oxygen addition into fuel was reviewed. The influence of oxidant or diluent addition into fuel on soot formation process are the fuel dilution effect, the adiabatic flame temperature altering effect and/or the chemical effect of oxygen. Their relative importance could change with fuel structure and adiabatic flame temperature.

  • PDF

Study on Emission Characteristics in a Hydrogen-fueled Engine (수소기관에서의 배기가스에 관한 연구)

  • Cho, U.L.;Ghoi, G.H.;Bae, S.C.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.1
    • /
    • pp.83-89
    • /
    • 2002
  • The goal of this research is to understand the NOx emission in direct injected diesel engine with premixed hydrogen fuel. Hydrogen fuel was supplied into the test engine through the intake pipe. Amount of hydrogen-supplemented fuel was 70 % basis on heating value of the total input fuel. The effects of intake air temperature and exhaust gas recirculation(EGR) on NOx emission were studied. The intake air temperatures were varied from $23^{\circ}C$ to $0^{\circ}C$ by using liquid nitrogen. Also, the exhaust gas was recirculated to the intake manifold and the amount of exhaust gas was controlled by the valve. The major conclusions of this work include: ( i ) nitrogen concentrations in the intake pipe were increased by 30% and cylinder gas temperature was decreased by 24% as the intake air temperature were changed from $23^{\circ}C$ to $0^{\circ}C$; ( ii ) NOx emission per unit heating value of supplied fuel was decreased by 45% with same decrease of intake air temperature; and (iii) NOx emission was decreased by 77% with 30% of EGR ratio. Therefore, it may be concluded that EGR is effective method to lower NOx emission in hydrogen fueled engine.

La0.8Ca0.2CrO3 Interconnect Materials for Solid Oxide Fuel Cells: Combustion Synthesis and Reduced-Temperature Sintering

  • Park, Beom-Kyeong;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.39-44
    • /
    • 2011
  • Sub-micrometer $La_{0.8}Ca_{0.2}CrO_3$ powders for ceramic interconnects of solid oxide fuel cells were synthesized by the aqueous combustion process. The materials were prepared from the precursor solutions with different glycine (fuel)-to-nitrate (oxidant) ratios (${\phi}$). Single-phase $La_{0.8}Ca_{0.2}CrO_3$ powders with a perovskite structure were obtained after combustion when ${\phi}$ was equal to or larger than 0.480. Especially, the stoichiometric precursor with ${\phi}$ = 0.555 yielded the spherical $La_{0.8}Ca_{0.2}CrO_3$ particles with 150-250 nm diameters after calcination at $1000^{\circ}C$. When compared with the powders synthesized by the solid-state reaction, the combustion-derived, fine powders exhibited improved sinterability, leading to near-full densification at $1400^{\circ}C$ in oxidizing atmospheres. Moreover, a small quantity of glass additives was used to reduce the sintering temperature, and considerable densification was indeed achieved at temperatures as low as $1100^{\circ}C$.

A Study on Injection Characteristics of High Temperature Fuel through Orifice Injectors (고온 연료의 오리피스 인젝터 분사특성 연구)

  • Lee, Hyung Ju;Choi, Hojin;Kim, Ildoo;Hwang, Ki-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.119-126
    • /
    • 2014
  • An experimental study was conducted to study fuel injection characteristics through plain orifice injectors when the fuel was heated to the temperature higher than its boiling point. Three injectors with different orifice diameters were used to measure the flow coefficient (${\alpha}$) for the injection pressure ranges of 3, 5, and 10 bar and the fuel temperature ranges between 50 and $270^{\circ}C$. The study showed that ${\alpha}$ decreases gradually with the fuel temperature below $180^{\circ}C$ while it drops abruptly when the temperature goes beyond $187^{\circ}C$, the boiling temperature of the fuel. The slope of ${\alpha}$ bifurcated at the boiling temperature for different injection pressures, and ${\alpha}$ decreased faster for the lower injection pressure due to the more active boiling in the injector. In addition, the larger orifice diameter had the higher ${\alpha}$ value, and ${\alpha}$ jumped at moderate temperature ranges when the injection pressure was low, implying the turbulent-laminar transition phenomena. The measured ${\alpha}$ was plotted against the cavitation number($K_c$), and the characteristics were independent of the applied pressure for small injectors when the fuel was evaporated before it was injected.

Cesium Release Behavior during the Thermal Treatment of High Bum-up Spent PWR Fuel (고연소도 경수로 사용후핵연료의 열처리에 따른 세슘 방출거동)

  • Park, Geun-Il;Cho, Kwang-Hun;Lee, Jung-Won;Park, Jang-Jin;Yang, Myung-Seung;Song, Kee-Chan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.1
    • /
    • pp.53-64
    • /
    • 2007
  • The dynamic release behavior of Cs from high burn-up spent PWR fuel was experimentally performed under the conditions of a thermal treatment process such as voloxidation and sintering conditions. In voloxidation process, influence of the oxidation and reduction atmosphere on the Cs release characteristic using fragment type of spent fuel heated up to $1,500^{\circ}C$ was compared. In sintering process, temperature history effect on Cs release behavior was evaluated using green pellet under 4% $H_2/Ar$ environment. Temperature range for complete Cs release from spent fuel fragment under voloxidation condition was about $800^{\circ}C{\sim}1,200^{\circ}C$, but that of green pellet under the reduction atmosphere was $1,100^{\circ}C{\sim}1,400^{\circ}C$. Key parameters on Cs release behavior from spent fuel was powder formation as well as the diffusion rate of Cs compound to grain boundary and fuel surface.

  • PDF