• Title/Summary/Keyword: Fuel-C

Search Result 2,841, Processing Time 0.029 seconds

A Study on the Variation of Physical & chemical Properties with Refining treatment and Additive mixture for Marine Fuel Oil (선박연료유의 정제처리 및 첨가제 혼합에 따른 물리.화학적 특성 변화에 관한 연구)

  • Han, Won-Hui;Nam, Jeong-Gil;Lee, Don-Chool;Park, Jeong-Dae;Kang, Dae-Sun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.291-297
    • /
    • 2006
  • Recently it is a tendency that the use of the heavy fuel oil is investigated even from the middle&small class vessel in order to reduce the operating cost of vessel caused by with rise of international gas price. In this study, analyzed the physical & chemical properties and examined the effect of refining treatment and a fuel oil additive for MF30 fuel oil which is a mixture fuel oil mixed M.G.O and the heavy oil MF380 use to be possible in the middle&small class vessel. As a results, the effects of two of pre-refinery treatment methods as centrifugal purifier and heating & homogenizing system(M.C.H) are some feeble, but the pour point and the flash point came to be low more or less. The effect of property improvement which is caused by with the fuel oil additive did not appear positively.

  • PDF

Development of Large-scale Ni-Al Alloy Fabrication Process at Low Temperature (대용량 저온 Ni-Al 합금 분말 제조 공정 개발)

  • LEE, MIN JAE;KANG, MIN GOO;JANG, SEONG-CHEOL;HAM, HYUNG CHUL;AHN, JOONG WOO;NAM, SUK WOO;YOON, SUNG PIL;HAN, JONGHEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.64-70
    • /
    • 2018
  • In this study, the kg-class Ni-Al alloy fabrication process at low temperature was developed from the physical mixture of Ni and Al powders. The AlCl3 as an activator was used to reduce the temperature of alloy synthesis below the melting temperature of Ni and Al elements (<$500^{\circ}C$). Mixed phase of Ni3Al intermetallic and Ni-Al solid-solution were identified in the XRD pattern analysis. Furthermore, from the analysis of SEM and particle size analyzer, we found that the particle size of synthesized alloy powders was not changed compared to the initial size of Ni particle after the formation of alloy powder at $500^{\circ}C$. In the creep test, the anode (which was fabricated by the prepared Ni-Al alloy powders in this study) displayed the enhanced creep resistance compared to the conventional anode.

CFD ANALYSIS OF FLOW CHANNEL BLOCKAGE IN DUAL-COOLED FUEL FOR PRESSURIZED WATER REACTOR (가압경수로 이중냉각핵연료의 내측수로 막힘에 대한 전산유체역학 해석)

  • In, W.K.;Shin, C.B.;Park, J.Y.;Oh, D.S.;Lee, C.Y.;Chun, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.269-274
    • /
    • 2011
  • A CFD analysis was performed to examine the inner channel blockage of dual-cooled fuel which has being developed for the power uprate of a pressurized water reactor (PWR). The dual-cooled fuel consists of an annular fuel pellet($UO_2$) and dual claddings as well as internal and external cooling channels. The dual-cooled annular fuel is different from a conventional solid 려el by employing an internal cooling channel for each fuel pellet as well as an external cooling channel. One of the key issues is the hypothetical event of inner channel blockage because the inner channel is an isolated flow channel without the coolant mixing between the neighboring flow channels. The inner channel blockage could cause the Departure from Nucleate Boiling (DNB) in the inner channel that eventually causes a fuel failure. This paper presents the CFD simulation of the flow through the side holes of the bottom end plug for the complete entrance blockage of the inner channel. Since the amount of coolant supply to the inner channel depends on largely the pressure loss at the side hole, the pressure loss coefficient of the side hole was estimated by the CFD analysis. The CFD prediction of the loss coefficient showed a reasonable agreement with an experimental data for the complete blockage of both the inner channel entrance and the outer channel. The CFD predictions also showed the decrease of the loss coefficient as the outer channel blockage increases.

  • PDF

A Study on the Variation of Physical & Chemical Properties with Refining Treatment and Additive Mixture for Marine Fuel Oil (선박연료유의 정제처리 및 첨가제 혼합에 따른 물리.화학적 특성 변화에 관한 연구)

  • Han, Won-Hui;Nam, Jeong-Gil;Lee, Don-Chool
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.1 s.28
    • /
    • pp.39-45
    • /
    • 2007
  • Recently it is a tendency that the heavy fuel oil is considered to be used on board even middle or small sized vessels in order to reduce the operating cost of vessel mused by a rise in international oil prices. In this study, analyzed the physical & chemical properties and examined the effect of refining treatment and a fuel oil additive for MF30 fuel oil which is a mixture fuel oil mixed M.G.O and the heavy oil MF380 use to be possible in the middle&small class vessel. As a results, the effects of two of pre-refinery treatment methods as centrifugal purifier and heating & homogenizing system(M.C.H) are some feeble, but the pour point and the flash point came to be low more or less. The effect of property improvement which is mused by the fuel oil additive did not appear positively.

  • PDF

Preparation of Thin Film Electrolyte for Solid Oxide Fuel Cell by Sol-Gel Method and Its Gas Permeability (졸-겔법을 이용한 고체산화물연료전지의 전해질 박막 제조 및 가스 투과도)

  • Son, Hui-Jeong;Lee, Hye-Jong;Lim, Tak-Hyoung;Song, Rak-Hyun;Peck, Dong-Hyun;Shin, Dong-Ryul;Hyun, Sang-Hoon;Kilner, John
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.827-832
    • /
    • 2005
  • In this study, thin electrolyte layer was prepared by 8YSZ ($8mol\%$ Yttria-Stabilized Zirconia) slurry dip and sol coating onto the porous anode support in order to reduce ohmic resistance. 8YSZ polymeric sol was prepared from inorganic salt of nitrate and XRF results of xerogel powder exhibited similar results $(99.2\pm1wt\%)$ compared with standard sample (TZ-8YS, Tosoh Co.). The dense and thin YSZ film with $1{\mu}m$ thickness was synthesized by coating of 0.7M YSZ sol followed by heat-treatment at $600^{\circ}C$ for 1 h. Thin film electrolyte sintered at $1400^{\circ}C$ showed no gas leakage at the differential pressure condition of 3 atm.

A Study on the Effects of Hydrogen Addition and Swirl Intensity in CH4-Air Premixed Swriling Flames (메탄-공기 예혼합 선회화염에서 수소첨가와 선회강도 영향에 관한 연구)

  • KIM, HAN SEOK;CHO, JU HYEONG;KIM, MIN KUK;HWANG, JEONGJAE;LEE, WON JUNE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.593-600
    • /
    • 2019
  • The combustion characteristics of methane/hydrogen pre-mixed flame have been investigated with swirl stabilized flame in a laboratory-scale pre-mixed combustor with constant heat load of 5.81 kW. Hydrogen/methane fuel and air were mixed in a pre-mixer and introduced to the combustor through a burner nozzle with different degrees of swirl angle. The effects of hydrogen addition and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using particle image velocimetry (PIV), micro-thermocouples, various optical interference filters and gas analyzers to provide information about flow velocity, temperature distributions, and species concentrations of the reaction field. The results show that higher swirl intensity creates more recirculation flow, which reduces the temperature of the reaction zone and, consequently, reduces the thermal NO production. The distributions of flame radicals (OH, CH, C2) are dependent more on the swirl intensity than the percentage of hydrogen added to methane fuel. The NO concentration at the upper part of the reaction zone is increased with an increase in hydrogen content in the fuel mixture because higher combustibility of hydrogen assists to promote faster chemical reaction, enabling more expansion of the gases at the upper part of the reaction zone, which reduces the recirculation flow. The CO concentration in the reaction zone is reduced with an increase in hydrogen content because the amount of C content is relatively decreased.

Evaluation of the Corrosion Behavior of the Aluminum Cladding in the KMRR Fuel (KMRR 핵연료 알루미늄 피복재의 부식 거동 평가)

  • Lee, Chan-Bock;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.526-535
    • /
    • 1994
  • For the evaluation of the corrosion behavior of the aluminum cladding in the KMRR(Korea Multipurpose Research Reactor) fuel, a modified Griess correlation was derived by introducing a heat flux factor derived from the comparison of the measured in-reactor corrosion data with the prediction of the Griess correlation. As a design criterion on the corrosion to maintain the KMRR fuel integrity, prevention of the oxide spallation was conservatively selected, which is conservatively assumed to occur when the temperature difference across the oxide layer exceeds 114$^{\circ}C$. A bounding power history of the KMRR fuel was determined by examining all the power histories of the KMRR fuel from cycle 1 to equilibrium cycle, and used to predict the maximum possible corrosion. Results of the corrosion prediction of the KMRR fuel with the bounding power history showed that the maximum local thickness of the oxide layer would be below 50$\mu$m and the design criterion on the oxide spallation would be satisfied with a factor of two margin. Therefore, it can be said that corrosion of the cladding will not impair the integrity of the KMRR fuel. Nevertheless, the applicability of the modified Griess correlation to the KMRR needs to be further verified through the KMRR fuel corrosion surveillance.

  • PDF

Poly(arylene ether ketone) block copolymer prepared through sulfonation process for polymer electrolyte membrane fuel cell (술폰화 공정을 통해 제조한 고분자 전해질형 연료전지용 폴리(아릴렌 이서 케톤) 블록 코폴리머)

  • Jang, Hyeri;Nahm, Keesuk;Yoo, Dongjin
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.66-72
    • /
    • 2016
  • In this study, a sulfonated poly(arylene ether ketone) block copolymer was prepared from hydrophilic oligomer and hydrophobic oligomer. The structure of the prepared membrane was characterized by $^1H$-NMR, FT-IR and GPC. The $M_w$(weight-average molecular weights) of the polymer was $209,700g\;mol^{-1}$ and the molecular weight distribution($M_w/M_n$) of 1.25 was obtained. The prepared membrane showed excellent thermal stability with gradual weight loss up to $200^{\circ}C$. The proton conductivity of SPAEK block copolymer reached the maximum of $9.0mS\;cm^{-1}$ at $90^{\circ}C$ under 100% relative humidity (RH). From the observed results, it is necessary to do more aggressive attempt to study the possibility of application as an ion-conductive composite electrolyte.

Characteristics of Coals Extracted Using Solvent at Mild and High Temperature Conditions (온순조건과 고온조건에서 용매 추출한 석탄의 특성 비교)

  • Park, Keun Yong;Choi, Ho Kyung;Kim, Sang Do;Yoo, Ji Ho;Chun, Dong Hyuk;Rhim, Young Joon;Lim, Jeong Han;Lee, Si Hyun;Na, Byung Ki
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.529-533
    • /
    • 2012
  • In this study, we compare various physicochemical properties of solvent extracted coals obtained at both mild and high temperature conditions. In order to characterize the extraction behavior, experiments were performed using a sub-bituminous coal (Kideco) and a polar solvent (N-methyl-2-pyrrolidinone, NMP), where the extraction temperature and the effect of solvent recycling were evaluated. As the extraction temperature increased up to $350^{\circ}C$, an extraction yield and a calorific value of the extracted coal increased, while an ash content of the extracted coal decreased. FT-IR results revealed that the surface of the coal extracted at $350^{\circ}C$ was found to contain more amide, aromatic ester, and aliphatic ether groups than that at the lower temperatures. The result of MALDI-TOF/MS analysis confirmed that the smaller molecules with 300~500 m/z were extracted at a mild condition, while the bigger molecules in the range of 500~1500 m/z were extracted at the high temperature.

A Study on the Quality Characteristic of Power Bio-Fuel Oil for Alternative Fuel oil (중유 대체연료로서 발전용 바이오중유의 품질특성 연구)

  • Jang, Eun-Jung;Park, Jo-Yong;Min, Kyung-Il;Yim, Eui-Soon;Ha, Jong-Han;Lee, Bong-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.562-571
    • /
    • 2014
  • In these days, many countries carry out many renewable energy policies to increase the renewable energy portion and to reduce the GHG(Green House Gas). In Korea, RPS(Renewable Portfolio Standards) focused on over 500MW power producers is conducting. And they are using the bio-fuel oil to meet their RPS quota. The oil is a mixture of animal and vegetable fat or fatty acid ester of them and should satisfy some specifications to use the power generation such as viscosity, pour point, acid number. Depends on the raw materials, quality characteristics of power bio-fuel oil are changed. By adding the power bio-fuel oil, pour point, density, sulfur content and viscosity are decreased and acid number, iodine number, oxygen content are increased. In this study, we test the quality characteristic of power bio-fuel oil and the property changes by the blending ratio of power bio-fuel oil & conventional fuel oil.