• Title/Summary/Keyword: Fuel-C

검색결과 2,841건 처리시간 0.034초

Carbon Contained Ammonium Diuranate Gel Particles Preparation in Mid-process of High-temperature Gas-cooled Reactor Fuel Fabrication

  • Jeong, Kyung Chai;Cho, Moon Sung
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.175-181
    • /
    • 2016
  • This study investigates the dispersibility of carbon in carbon contained ammonium diuranate (C-ADU) gel particles and the characteristics of C-ADU gel liquid droplets produced by the vibrating nozzle and integrated aging-washing-drying equipment. It was noted that the excellent stability of carbon dispersion was only observed in the C-ADU gel particle that contained carbon black named CB 10. ADU gel liquid droplets containing carbon particles with the excellent sphericity of approximately 1,950 mm were then obtained using an 80-100-Hz vibrating nozzle system. Dried C-ADU gel particles obtained by the aging-washing-drying equipment were thermal decomposed until $500^{\circ}C$ at a rate of $1^{\circ}C/min$ in an air or in 4% $H_2$ gas atmosphere. The thermally decomposed C-ADU gel particles showed 24% weight loss and a more complicated profile than that of ADU gel particles.

바이오디젤의 난방유로서의 연료특성 (Fuel Qualities of Different Biodiesels in the Gun Type Burner)

  • 김영중;강연구;강금춘;유영선
    • Journal of Biosystems Engineering
    • /
    • 제33권2호
    • /
    • pp.124-129
    • /
    • 2008
  • In this study, fuel qualities including kinematic viscosity and pour point in the various temperature, calorific value and combustion characteristics of two biodiesels based on the soybean and waste oil blended with light oil were investigated and discussed in order to figure out to confirm fuel compatibility taking the place of light oil in the hot air heater or boiler. As biodiesel content ratio increased calorific value of biodiesel decreased, and the difference was 13% between 100%-biodiesel and light oil. In general, pour points of the biodiesels were higher than light oil, and as biodiesel content ratio increased pour point increased. About 15 cSt was the pour point of biodiesels and light oil, which occurred at 3 to $4^{\circ}C$ in the biodiesels and $-25^{\circ}C$ in the light oil. Flame dimensions of biodiesels and light oil were almost same at the same combustion condition in the burner of the hot air heater. CO concentrations in the exhaustion gas were far lower than those of the light oil. Though pour point of biodiesel is a little inferior to light oil, still biodiesel can be an alternative fuel substituting for light oil in combustion system without much modifying the current oil combustion mechanism.

복소임피던스법에 의한 인산형 연료전지용 전해질 매트릭스 특성 (Characteristics of Matrix Retaining Electrolyte in a Phosphoric Acid Fuel Cell Analyzed by A.C. Impedance Spectroscopy)

  • 윤기현;장재혁;허재호;김창수;김태희
    • 한국세라믹학회지
    • /
    • 제32권2호
    • /
    • pp.189-196
    • /
    • 1995
  • Materials retaining electrolyte of a phosphoric acid fuel cell (PAFC) have been prepared with SiC powder to SiC whisker mixing ratios of 1:1, 1:2, 1:3, 1:4, 0:1 by a tape casting method. When 3wt% dispersant (sorbitan monooleate) is added to a matrix, the porosity of the matrix decreases a little while the bubble pressure and area of the matrix increase remarkably in comparison with no dispersant content. Effect of the electrolyte resistance and the polarization resistance on perfomance of a PAFC has been investigated using A.C. impedance spectroscopy. With the increase of whisker content, the electrolyte resistance decreases due to the increase of porosity and acid absorbancy, and the polarization resistance increases due to the increase of surface roughness. The polarization resistance affects current density predominantly at the higher potential than 0.7V becuase the polarization resistance is considrably larger than the electrolyte resistance. Both the electrolyte resistance and the polarization resistance affect current density near 0.7V of the fuel cell operating potential because they have similar values. The electrolyte resistance affects current density predominantly at the lower potential than the fuel cell operating potential because the electrolyte resistance is larger than the polarization resistance.

  • PDF

디젤기관의 배기 배출물 중 가스 크로마토그래피를 이용한 탄화수소분석에 관한 실험적 연구 (An Experimental study on Analysis of Hydrocarbon of Exhaust gas Using Oxygenated Fuels by Gas Chromatography in Diesel Engine)

  • 최승훈;오영택
    • 동력기계공학회지
    • /
    • 제4권3호
    • /
    • pp.12-18
    • /
    • 2000
  • Recently, our world is faced with very serious and hard problems related to the air pollution due to the exhaust emissions of the diesel engine. So, lots of researchers have studied to reduce the exhaust emissions with various methods of diesel engine that influenced the environment strong. In this paper, the quantities of the low and high hydrocarbon among the exhaust emissions in diesel engine have been investigated by the quantitative analysis of the hydrocarbon $C_1{\sim}C_6$ using the gas chromatography. This study carried out by comparing the chromatogram with diesel fuel and three kinds of mixed fuels. One is the diesel fuel blended DGM(diethylene glycol dimethyl ether) 5%. Another is the diesel fuel blended DEE(diethyl ether) 25% and DMC(dimethyl carbonate) 10%. The results of this study show that the hydrocarbon $C_1{\sim}C_6$ among the exhaust emissions of the mixed fuels are exhausted lower than those of the diesel fuel at the all load and speed.

  • PDF

직접분사식 디젤기관에서 바이오디젤 연료의 연소특성 (The Combustion Characteristics of Biodiesel Fuel as an Alternative Fuel for D.I. Diesel Engine)

  • 장세호;서정주
    • 동력기계공학회지
    • /
    • 제12권2호
    • /
    • pp.12-17
    • /
    • 2008
  • Biodiesel fuel(BDF) which is easily produced from vegetable oils such as soybean oil and rice bran oil can be effectively used as an alternative fuel in diesel engine. But biodiesel fuel can affect the performance and emissions in diesel engine because it has different chemical and physical properties from diesel fuel. To investigate the combustion characteristics of biodiesel fuel as an alternative fuel for D.I. diesel engine, the experiments were carried out at the three-cylinder, four stroke D.I. diesel engine with T/C. Experimental parameters adopted a conventional diesel fuel and a blend of biodiesel fuel derived from soybean. As a result of experiments in a test engine, BSFC with blend of BDF resulted in higher than with diesel fuel. The ignition delay decreased with blend of BDF than with diesel fuel.

  • PDF

고체산화물 연료전지용 디젤 자열개질기의 장기성능에 미치는 H2O/C와 O2/C 몰 비의 영향 (Effect of the Molar H2O/ and the Molar O2/C Ratio on Long-Term Performance of Diesel Autothermal Reformer for Solid Oxide Fuel Cell)

  • 윤상호;강인용;배규종;배중면
    • 전기화학회지
    • /
    • 제10권2호
    • /
    • pp.110-115
    • /
    • 2007
  • 고온형 연료전지인 고체산화물 연료전지(solid oxide fuel cell, SOFC)는 연료에 대한 유연성(fuel flexibility)이 높다. 따라서 높은 에너지 밀도를 가진 디젤을 개질하여 SOFC를 운전하는 것은 효과적인 방법이다. 하지만 디젤이 가지는 특성으로 인해 디젤 자열개질기(autothermal refromer)는 운전 시간에 따라 탄소 침적(carbon deposition) 현상이 발생하여 개질기의 성능이 쉽게 저감된다. 개질기 성능 저감 현상 때문에 개질 가스들 중에 탄화수소 생성량이 많아지며, 이는 SOFC 성능도 저감시킨다. 이러한 현상은 연료극에 공급되는 탄화수소가 야기하는 탄소 침적으로 사료된다. 본 연구에서는 탄화수소가 SOFC에 주는 성능 저감을 확인하였으며, 연료전지 성능 저감을 줄이기 위한 디젤 자열개질기 반응물들의 조건 선정($H_2O/C$$O_2/C$의 몰 비)을 통해 디젤 자열 개질기 특성을 살펴보았다. 특히 $H_2O/C=0.8$$O_2/C=3$인 디젤 자열개질 반응 조건에서 좋은 개질 성능을 확인할 수 있었다.

새로운 능동 클램핑방식을 이용한 연료전지용 DC-AC 인버터의 특성 (Characteristic of fuel Cell DC-AC Inverter Using New Active Clamping Method)

  • 김칠용;조만철;문상필;김영준;김홍삼
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2007년도 추계학술대회 논문집
    • /
    • pp.337-340
    • /
    • 2007
  • In the dissertation, a power conversion system for fuel cell is composed of a PWM inverter with LC filter in order to convert fuel cell voltage to a single phase 220[V], In addition, new insulated DC-DC converters are proposed in order that fuel cell voltage is boosted to 380[V]. In this paper, it requires smaller components than existing converters, which makes easy control. The proposed DC-DC converter controls output power by the adjustment of phase-shift width using switch S5 and S6 in the secondary switch, which provides 93-97[%] efficiency in the wide range of output voltage. Fuel cell simulator is implemented to show similar output characteristics to actual fuel cell. Appropriate dead time td enables soft switching to the range where the peak value of excitation current in a high frequency transformer is in accordance with current in the primary circuit. Moreover, appropriate setting to serial inductance La reduces communication loss arisen at light-load generator and serge voltage arisen at a secondary switch and serial diode. Finally, TMS320C31 board and EPLD using PWM switching technique to act a single phase full-bridge inverter which is planed to make alternating current suitable for household.

  • PDF

Conversion of organic residue from solid-state anaerobic digestion of livestock waste to produce the solid fuel through hydrothermal carbonization

  • Yang, Seung Kyu;Kim, Daegi;Han, Seong Kuk;Kim, Ho;Park, Seyong
    • Environmental Engineering Research
    • /
    • 제23권4호
    • /
    • pp.456-461
    • /
    • 2018
  • The solid-state anaerobic digestion (SS-AD) has promoted the development and application for biogas production from biomass which operate a high solid content feedstock, as higher than 15% of total solids. However, the digested byproduct of SS-AD can be used as a fertilizer or as solid fuel, but it has serious problems: high moisture content and poor dewaterability. The organic residue from SS-AD has to be improved to address these problems and to make it a useful alternative energy source. Hydrothermal carbonization was investigated for conversion of the organic residue from the SS-AD of livestock waste to solid fuels. The effects of hydrothermal carbonization were evaluated by varying the reaction temperatures within the range of $180-240^{\circ}C$. Hydrothermal carbonization increased the calorific value through the reduction of the hydrogen and oxygen contents of the solid fuel, in addition to its drying performance. Therefore, after the hydrothermal carbonization, the H/C and O/C atomic ratios decreased through the chemical conversion. Thermogravimatric analysis provided the changed combustion characteristics due to the improvement of the fuel properties. As a result, the hydrothermal carbonization process can be said to be an advantageous technology in terms of improving the properties of organic waste as a solid-recovered fuel product.

직접 에탄올 연료전지용 백금합금촉매의 합성과 특성분석 (Synthesis and Characterization of Pt based Alloy Catalysts for Direct Ethanol Fuel Cell)

  • 김이영;김수길;한종희;김한성
    • 전기화학회지
    • /
    • 제11권2호
    • /
    • pp.109-114
    • /
    • 2008
  • 에탄올이 이산화탄소가 생성되는 경로로 반응할 경우 12개의 전자를 발생시키게 되지만 실제로는 두 개의 탄소 원자사이의 결합력 때문에 완전 산화시키는 것이 쉽지 않다. 따라서 고성능 에탄을 산화촉매의 개발은 에탄을 연료전지 실용화에 필수적이다. 본 연구는 Pt에 Sn, Au을 첨가하여 이원계, 삼원계 촉매를 제조하여 에탄올에서의 활성과 촉매의 특성에 대한 분석을 수행하였다. 촉매합성은 modified polyol 방법을 이용하였으며 Vulcan XC-72R 담지체를 사용하여 20 wt%로 담지하였다. PtSn/c 합금촉매는 Pt : Sn의 비율이 1 : 0, 4 : 1, 3 : 1, 2 : 1, 1.5 : 1, 1 : 1, 1 : 1.5으로 합성하였으며, PtSnAu/C 합금촉매는 Pt : Sn : Au의 비율을 5 : 5 : 0, 5 : 4 : 1, 5 : 3 : 2, 5 : 2 : 3으로 합성하였다. 촉매특성은 XRD, TEM 분석을 통해 분석한 결과 $1.9{\sim}2.4\;nm$ 정도의 입자의 크기와 면심입방구조의 구조를 가지는 것으로 확인하였다. 에탄올 산화에 대한 합금촉매의 활성은 순환전류전압법으로 실험하였고, 그 중 가장 높은 성능을 가진 PtSn(1.5 : 1)/C와 PtSnAu(5 : 2 : 3)/C 합금촉매를 단위전지 성능평가륵 통해 실제 연료전지 구동환경에서 촉매의 활성을 측정하였다. 그 결과 에탄을 산화에 가장 높은 성능을 나타낸 촉매는 PtSn/c(1.5 : 1)이었고, 촉매의 안정성은 PtSnAu/C(5 : 2 : 3)에서 높게 나타났다.