DOI QR코드

DOI QR Code

Synthesis and Characterization of Pt based Alloy Catalysts for Direct Ethanol Fuel Cell

직접 에탄올 연료전지용 백금합금촉매의 합성과 특성분석

  • Kim, Yi-Young (Center for Fuel Cell Research, Korea Institute of Science and Technology) ;
  • Kim, Soo-Kil (Department of Chemical Engineering, Yonsei University) ;
  • Han, Jong-Hee (Center for Fuel Cell Research, Korea Institute of Science and Technology) ;
  • Kim, Han-Sung (Center for Fuel Cell Research, Korea Institute of Science and Technology)
  • 김이영 (한국과학기술연구원 연료전지 연구단) ;
  • 김수길 (연세대학교 화학공학과 전기화학에너지 연구실) ;
  • 한종희 (한국과학기술연구원 연료전지 연구단) ;
  • 김한성 (한국과학기술연구원 연료전지 연구단)
  • Published : 2008.05.31

Abstract

Though ethanol can theoretically generate 12 electrons during oxidation to carbon dioxide, the complete oxidation of ethanol is hard to achieve due to the strong bond between the two carbons in its molecular structure. Therefore, development of high activity catalyst for ethanol oxidation is necessary for the commercialization of direct ethanol fuel cell. In this study, some binary and ternary electrocatalysts of PtSn/C and PtSnAu/C have been synthesized and characterized. The catalysts were fabricated with modified polyol method with the amounts of 20 wt%, where the Pt : Sn ratios in the PtSn/C were 1 : 0, 4 : 1, 3 : 1, 2 : 1, 1.5 : 1, 1 : 1, 1 : 1.5 and Pt:Sn:Au ratios in the PtSnAu/C were 5 : 5 : 0, 5 : 4 : 1, 5 : 3 : 2, 5 : 2 : 3. From the XRD and TEM analysis results, the catalysts were found to have face centered cubic structure with particle size of around $1.9{\sim}2.4\;nm$. The activity in the ethanol oxidation was examined with cyclic voltammetry and the results indicated that PtSn(1.5 : 1)/C and PtSnAu(5 : 2 : 3)/C had the highest activity in each catalyst system. Further tests with single cell were performed with those catalysts. It was found that PtSn/C(1.5 : 1) exhibited the best performance while the long term stability of PtSnAu/C(5 : 2 : 3) is better than PtSn/C(1.5 : 1).

에탄올이 이산화탄소가 생성되는 경로로 반응할 경우 12개의 전자를 발생시키게 되지만 실제로는 두 개의 탄소 원자사이의 결합력 때문에 완전 산화시키는 것이 쉽지 않다. 따라서 고성능 에탄을 산화촉매의 개발은 에탄을 연료전지 실용화에 필수적이다. 본 연구는 Pt에 Sn, Au을 첨가하여 이원계, 삼원계 촉매를 제조하여 에탄올에서의 활성과 촉매의 특성에 대한 분석을 수행하였다. 촉매합성은 modified polyol 방법을 이용하였으며 Vulcan XC-72R 담지체를 사용하여 20 wt%로 담지하였다. PtSn/c 합금촉매는 Pt : Sn의 비율이 1 : 0, 4 : 1, 3 : 1, 2 : 1, 1.5 : 1, 1 : 1, 1 : 1.5으로 합성하였으며, PtSnAu/C 합금촉매는 Pt : Sn : Au의 비율을 5 : 5 : 0, 5 : 4 : 1, 5 : 3 : 2, 5 : 2 : 3으로 합성하였다. 촉매특성은 XRD, TEM 분석을 통해 분석한 결과 $1.9{\sim}2.4\;nm$ 정도의 입자의 크기와 면심입방구조의 구조를 가지는 것으로 확인하였다. 에탄올 산화에 대한 합금촉매의 활성은 순환전류전압법으로 실험하였고, 그 중 가장 높은 성능을 가진 PtSn(1.5 : 1)/C와 PtSnAu(5 : 2 : 3)/C 합금촉매를 단위전지 성능평가륵 통해 실제 연료전지 구동환경에서 촉매의 활성을 측정하였다. 그 결과 에탄을 산화에 가장 높은 성능을 나타낸 촉매는 PtSn/c(1.5 : 1)이었고, 촉매의 안정성은 PtSnAu/C(5 : 2 : 3)에서 높게 나타났다.

Keywords

References

  1. J. Larminie, "Fuel cell systems explained", John Wiley & Sons, 28, New York (2003)
  2. N. R. de Tacconi, R. O. Lezn, B. Beden, F. Hahn, and C. Lamy, "In-situ FTIR study of the electrocatalytic oxidation of ethanol at iridium and rhodium electrodes", J. Electroanal. Chem., 379, 329 (1994) https://doi.org/10.1016/0022-0728(94)87155-8
  3. G. A. Camara and T. Iwasita, "Parallel pathways of ethanol oxidation: The effect of ethanol concentration", J. Electroanal. Chem., 578, 315 (2005) https://doi.org/10.1016/j.jelechem.2005.01.013
  4. S. Song, W. Zhou, Z. Liang, R. Cai, G. Sun, Q. Xin, V. Stergiopoulos, and P. Tsiakaras, "The effect of methanol and ethanol cross-over on the performance of PtRu/C-based anode DAFCs", Appl. Catalysis B: Envir., 55, 65 (2005) https://doi.org/10.1016/j.apcatb.2004.05.017
  5. S. S. Gupta and J. Datta, "A comparative study on ethanol oxidation behavior at Pt and PtRh electrodeposits", J. Electroanal. Chem., 594, 65 (2006) https://doi.org/10.1016/j.jelechem.2006.05.022
  6. C. Lamy, E. M. Belsir, and J.-M. Leger, "Electrocatalytic oxidation of aliphatic alcohols: Application to the direct alcohol fuel cell(DAFC)", J. Appl. Electrochem., 31, 799 (2001) https://doi.org/10.1023/A:1017587310150
  7. W. J. Zhou, S. Q. Song, W. Z. Li, Z. H. Zhou, G. Q. Sun, Q. Xina, S. Douvartzidesc, and P. Tsiakarasc, "Direct ethanol fuel cells based on PtSn anodes: the effect of Sn content on the fuel cell performance", J. Power Sources, 140, 50 (2005) https://doi.org/10.1016/j.jpowsour.2004.08.003
  8. S. W. Ho and Y. S. Su, "Effects of ethanol impregnation on the properties of silica-supported cobalt catalysts", J. Catalysis, 168, 51, (1997) https://doi.org/10.1006/jcat.1997.1614
  9. T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, and M. A. El-Sayed, "Shape-controlled synthesis of colloidal platinum nanoparticles", Science, 272, 1924 (1996) https://doi.org/10.1126/science.272.5270.1924
  10. W. Zhoua, Z. Zhou, S. Song, W. Li, G. Sun, P. Rsiakaras, and Q. Xin, "Pt based anode catalysts for direct ethanol fuel cells", Appl. catal. B: Envir., 46, 273 (2003) https://doi.org/10.1016/S0926-3373(03)00218-2
  11. Z. Zhou, S. Wang, W. Zhou, G. Wang, L. Jiang, W. Li, S. Song, J. Liu, G. Sun, and Q. Xin, "Novel synthesis of highly active Pt/C cathode electrocatalyst for direct methanol fuel cell", Chem. Comm., 394 (2003)
  12. S. C. Chang, L. W. H. Leung, and M. J. Weaver, "Metal crystallinity effects in electrocatalysis as probed by real-time FTIR spectroscopy: electrooxidation of formic acid, methanol, and ethanol on ordered low-index platinum surfaces", J. Phys. Chem., 94, 6013 (1990) https://doi.org/10.1021/j100378a072
  13. S. Rousseau, C. Coutanceau, C. Lamy, and J.-M. Leger, "Direct ethanol fuel cell(DEFC): electrical performances and reaction products distribution under operating conditions with different Pt-based anodes", J. Power Sources, 158, 18 (2006) https://doi.org/10.1016/j.jpowsour.2005.08.027
  14. J. H. Choi, K. J. Jeong, Y. J. Dong, J. H. Han, T. H. Lim, J. S. Lee, and Y. E. Sung, "Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells", J. Power Sources, 163, 71 (2006) https://doi.org/10.1016/j.jpowsour.2006.02.072
  15. J. Riberio, D. M. dos Anjos, K. B. Kokoh, C. Coutanceau, J.-M. Leger, P. Olivi, A. R. de Andrade, and G. Tremiliosi-Filho, "Carbon-supported ternary PtSnIr catalysts for direct ethanol fuel cell", Electrochimica Acta, 52, 6997 (2007) https://doi.org/10.1016/j.electacta.2007.05.017
  16. F. Vigier, C. coutanceau, A. Perrard, E. M. Belgsir, and C. Lamy, "Development of anode catalysts for a direct ethanol fuel cell", J. Appl. electrochem., 34, 439 (2004) https://doi.org/10.1023/B:JACH.0000016629.98535.ad
  17. H. Tsaprailis and V. I. Birss, "Sol-gel derived Pt-Ir mixed catalysts for DMFC applications", Electrochem. Solid-State Lett., 7, A348 (2004) https://doi.org/10.1149/1.1792253
  18. H. S. Oh, J. G. Oh, Y. G. Hong, and H. S. Kim "Investigation of carbon-supported Pt nanocatalyst preparation by the polyol process for fuel cell performances", Electrochimica Acta, 52, 7278 (2007) https://doi.org/10.1016/j.electacta.2007.05.080
  19. L. H. Jiang, Z. H. Zhou, W. Z. Li, W. J. Zhou, S. Q. Song, H. Q. Song, G. Q. Sun, and Q. Xin, "Effect of treatment in different atmosphere on $Pt_3Sn/C$ electrocatalysts for ethanol electro-oxidation", Energy & Fuels, 18, 866 (2004) https://doi.org/10.1021/ef034073q
  20. V. Radmilovic, H. A. Gasteiger, and P. N. Ross, "Structure and chemical composition of a supported Pt-Ru electrocatalyst for methanol oxidation", J. Catalysis, 154, 98 (1995) https://doi.org/10.1006/jcat.1995.1151
  21. Z. Liu, X. Y. Ling, X. Su, J. Y. Lee, and L. M. Gan, "Preparation and characterization of Pt/C and Pt-Ru/C electrocatalysts for direct ethanol fuel cells", J. Power Sources, 149, 1 (2005) https://doi.org/10.1016/j.jpowsour.2005.02.009