• Title/Summary/Keyword: Fuel types

Search Result 751, Processing Time 0.024 seconds

A Convergence Study on the Effects of NH3/NOx Ratio and Catalyst Type on the NOx Reduction by Urea-SCR System of Diesel Engine (디젤엔진의 Urea-SCR 시스템에 의한 NH3/NOx 비율 및 촉매 방식이 NOx 저감에 미치는 영향에 관한 융합연구)

  • Yoon, Heung-Soo;Ryu, Yeon-Seung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.4
    • /
    • pp.131-138
    • /
    • 2019
  • Diesel engines have important advantages over its gasoline counterpart including high thermal efficiency, high fuel economy and low emissions of CO, HC and $CO_2$. However, NOx reducing is more difficult on diesel engines because of the high $O_2$ concentration in the exhaust, marking general three way catalytic converter ineffective. Two method available technologies for continuous NOx reduction onboard diesel engines are Urea-SCR and LNT. The implementation of the Urea-SCR systems in design engines have made it possible for 2.5l and over engines to meet the tightened NOx emission standard of Euro-6. In this study, we investigate the characteristics of NOx reduction with respect to engine speed, load, types of catalyst and the $NH_3$/NOx ratio and present the conditions which maximize NOx reduction. Also we provide detailed experimental data on Urea-SCR which can be used for the preparation for standards beyond Euro-6.

A Study on Water-Proof Characteristics of a Stainless Steel Mesh by Electrochemical Etching Process (전기화학 에칭 공정을 이용한 스테인리스 스틸 메쉬의 방수 특성 연구)

  • Lee, Chan;Kim, Ji Min;Kim, Hyungmo
    • Tribology and Lubricants
    • /
    • v.37 no.5
    • /
    • pp.189-194
    • /
    • 2021
  • A straightforward, yet effective surface modification method of stainless steel mesh and its interesting anti-wetting characteristics are reported in this study. The stainless steel mesh is electrochemically etched, and the specimen has both micro and nano-scale structures on its surface. This process transforms the two types of mesh specimens known as the regular and dense specimens into hydrophobic specimens without applying any hydrophobic chemical coating process. The fundamental wettability of the modified mesh is analyzed through a dedicatedly designed experiment to investigate the waterproof characteristics, for instance, the penetration threshold. The waterproof characteristics are evaluated in a manner that the modified mesh resists as high as approximately 2.7 times the pressure compared with the bare mesh, i.e., the non-modified mesh. The results show that the penetration threshold depends primarily on the advancing contact angles, and the penetration stop behaviors are affected by the contact angle hysteresis on the surfaces. The findings further confirm that the inexpensive waterproof meshes created using the proposed straightforward electrochemical etching process are effective and can be adapted along with appropriate designs for various practical applications, such as underwater devices, passive valves, and transducers. In general, , additional chemical coatings are applied using hydrophobic materials on the surfaces for the applications that require water-repelling capabilities. Although these chemical coatings can often cause aging, the process proposed in this study is not only cost-effective, but also durable implying that it does not lose its waterproof properties over time.

Parameter Study of Boiling Model for CFD Simulation of Multiphase-Thermal Flow in a Pipe

  • Chung, Soh-Myung;Seo, Yong-Seok;Jeon, Gyu-Mok;Kim, Jae-Won;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.50-58
    • /
    • 2021
  • The demand for eco-friendly energy is expected to increase due to the recently strengthened environmental regulations. In particular, the flow inside the pipe used in a cargo handling system (CHS) or fuel gas supply system (FGSS) of hydrogen transport ships and hydrogen-powered ships exhibits a very complex pattern of multiphase-thermal flow, including the boiling phenomenon and high accuracy analysis is required concerning safety. In this study, a feasibility study applying the boiling model was conducted to analyze the multiphase-thermal flow in the pipe considering the phase change. Two types of boiling models were employed and compared to implement the subcooled boiling phenomenon in nucleate boiling numerically. One was the "Rohsenow boiling model", which is the most commonly used one among the VOF (Volume-of-Fluid) boiling models under the Eulerian-Eulerian framework. The other was the "wall boiling model", which is suitable for nucleate boiling among the Eulerian multiphase models. Moreover, a comparative study was conducted by combining the nucleate site density and bubble departure diameter model that could influence the accuracy of the wall boiling model. A comparison of the Rohsenow boiling and the wall boiling models showed that the wall boiling model relatively well represented the process of bubble formation and development, even though more computation time was consumed. Among the combination of models used in the wall boiling model, the simulation results were affected significantly by the bubble departure diameter model, which had a very close relationship with the grid size. The present results are expected to provide useful information for identifying the characteristics of various parameters of the boiling model used in CFD simulations of multiphase-thermalflow, including phase change and selecting the appropriate parameters.

A Study on Combustion Characteristics of Wood Biomass for Cogeneration Plant (열병합 발전소용 목질계 바이오매스의 연소 특성에 관한 연구)

  • Ryu, Jeong-Seok;Kim, Ki-Seok;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.296-300
    • /
    • 2011
  • In this work, various wood biomasses were used to determine the combustion characteristics for the fuel of cogeneration plant. Combustion characteristics of four types, i.e., (i) forest products, (ii) recycled wood, (iii) empty fruit bunch, and (iv) palm kernel shell, were examined via thermal gravimetric analyzer (TGA) in air atmosphere and coal was used as a comparison group. From the TGA results, the combustion of the wood biomass was occurred in the range of 280 to $420^{\circ}C$, which was lower than that of coal. Forest product showed the lowest activation energy (0.4 kJ/mol) compared to that of other wood biomasses (about 6 to 14 kJ/mol) and coal (64 kJ/mol). In addition, the reaction rate constant of the wood biomass was lower than that of coal. These results indicate the higher combustion initiation rate of wood biomass due to the high content of volatile matter, which had a low boiling point.

Optimization and modification of PVDF dual-layer hollow fiber membrane for direct contact membrane distillation; application of response surface methodology and morphology study

  • Bahrami, Mehdi;Karimi-Sabet, Javad;Hatamnejad, Ali;Dastbaz, Abolfazl;Moosavian, Mohammad Ali
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2241-2255
    • /
    • 2018
  • RSM methodology was applied to present mathematical models for the fabrication of polyvinylidene fluoride (PVDF) dual-layer hollow fibers in membrane distillation process. The design of experiments was used to investigate three main parameters in terms of polymer concentration in both outer and inner layers and the flow rate of dope solutions by the Box-Behnken method. According to obtained results, the optimization was done to present the proper membrane with desirable properties. The characteristics of the optimized membrane (named HF-O) suggested by the Box-Behnken (at the predicted point) showed that the proposed models are strongly valid. Then, a morphology study was done to modify the fiber by a combination of three types of a structure such as macro-void, sponge-like and sharp finger-like. It also improved the hydrophobicity of outer surface from 87 to $113^{\circ}$ and the mean pore size of the inner surface from 108.12 to 560.14 nm. The DCMD flux of modified fiber (named HF-M) enhanced 62% more than HF-O when it was fabricated by considering both of RSM and morphology study results. Finally, HF-M was conducted for long-term desalination process up to 100 hr and showed stable flux and wetting resistance during the test. These stepwise approaches are proposed to easily predict the main properties of PVDF dual-layer hollow fibers by valid models and to effectively modify its structure.

System Analysis of Expander Cycle Hydrogen Rocket Engine (팽창기 사이클 수소 로켓엔진의 시스템 해석)

  • Ha, Donghwi;Roh, Tae-Seong;Lee, Hyoung Jin;Yoo, Phil Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.5
    • /
    • pp.21-33
    • /
    • 2020
  • In this study, the program for system analysis of an expander cycle rocket engine using liquid hydrogen as a fuel was developed. The properties of hydrogen were considered by the ratio of isomers with temperature. The analysis procedure was established with the open and closed types of the expander cycle engine and the simulation methods were suggested for each component. To validation of the analysis program, we compared the performance of the engine operating point and the analysis results performed overseas for Vinci and SE-21D, which are expander cycle engines. As a result of the analysis, the main performance factors of the system, such as the mass flow of the propellant, specific thrust, and power, except for some of the inaccurate input information, showed high accuracy with an error of around 1-2%.

A Study on the Safety Improvement of PSA System for Hydrogen Separation and Purification (수소분리 및 정제를 위한 PSA(Pressure Swing Adsorption)시스템 안전성향상에 관한 연구)

  • Oh, Sang-Gyu;Lee, Seul-Gi;Lee, Jun-Seo;Ma, Byung-Chol
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.1
    • /
    • pp.7-19
    • /
    • 2022
  • Hydrogen purification is generally performed through chemical and physical methods. Among various types of purification method PSA(Pressure Swing Adsorption) is widely used with its purification capacity and economic efficiency. In Korea, most of the hydrogen used in automobiles and power generation fuel cells is purified using PSA. Hydrogen produced in petrochemical complexes has difficulties in transportation. The government is planning to install hydrogen extractors that produce hydrogen directly from consumers in connection with the city gas supply chain, and companies are also installing related research and demonstration facilities one after another. Europe and others have recently established safety standards related to PSA and are making efforts for systematic safety management at the construction and operation stage, but domestic safety standards related to PSA are still insufficient. This study aims to identify problems of existing facilities through surveys and risk assessment by companies operating existing PSA, and to prepare domestic technical standards including them in overseas technical standards to promote the safety of new and existing PSA systems.

Design of thermal inkjet print head with robust and reliable structure (크렉 방지를 위한 잉크젯 프린트 헤드 강건 설계)

  • Kim, Sang-Hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.337-342
    • /
    • 2022
  • Although printing technology has recently been widely used in IT fields including displays and fuel cells, residual and thermal stress are generated by a manufacturing process of stacking the layers of the print head and result in the substrate deformation and nozzle plate crack, which may cause ink leaks or not be ejected onto a desired region. Therefore, in this paper, we propose a new design of thermal inkjet print head with a robust and reliable structure. Diverse types of inkjet print head such as a rib, pillar, support wall and individual feed hole are designed to reduce the deformation of the substrate and nozzle plate, and their feasibility is numerically investigated through FEA analysis. The numerical results show that the maximum stress and deformation of proposed print head dramatically drops to at least 40~50%, and it is confirmed that there is no nozzle plate cracks and ink leakage through the fabrication of pillar and support wall typed print head. Therefore, it is expected that the proposed head shape can be applied not only to ink ejection in the normal direction, but also to large-area printing technology.

Numerical investigation on the hydraulic loss correlation of ring-type spacer grids

  • Ryu, Kyung Ha;Shin, Yong-Hoon;Cho, Jaehyun;Hur, Jungho;Lee, Tae Hyun;Park, Jong-Won;Park, Jaeyeong;Kang, Bosik
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.860-866
    • /
    • 2022
  • An accurate prediction of the pressure drop along the flow paths is crucial in the design of advanced passive systems cooled by heavy liquid metal coolants. To date, a generic pressure drop correlation over spacer grids by Rehme has been applied extensively, which was obtained from substantial experimental data with multiple types of components. However, a few experimental studies have reported that the correlation may give large discrepancies. To provide a more reliable correlation for ring-type spacer grids, the current numerical study aims at figuring out the most critical factor among four hypothetical parameters, namely the flow area blockage ratio, number of fuel rods, type of fluid, and thickness of the spacer grid in the flow direction. Through a set of computational fluid dynamics simulations, we observed that the flow area blockage ratio dominantly influences the pressure loss characteristics, and thus its dependence should be more emphasized, whereas the other parameters have little impact. Hence, we suggest a new correlation for the drag coefficient as CB = Cν,m2.7, where Cν,m is formulated by a nonlinear fit of simulation data such that Cν,m = -11.33 ln(0.02 ln(Reb)).

A Study on the Response Characteristics of 200MW Gas Turbine Governor System (200MW급 가스터빈 조속기 응답특성에 대한 연구)

  • Han, Young-Bok;Nam, Kang-Hyun;Kim, Sung-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.625-632
    • /
    • 2022
  • Gas turbine generators in load-following operation in the domestic power system play a major role in maintaining the rated frequency, but often have poor frequency control. Therefore, after examining the control characteristics of the governor, which is a gas turbine speed control device, and analyzing the failure types, countermeasures were suggested for each case. In addition, it was confirmed through the governor response test that the gas turbine helps in frequency recovery depending on the speed of fuel control, but also acts as a factor impeding stable operation, such as rapid fluctuations in combustion chamber temperature and combustion vibration. Therefore, in order to maintain stable power quality, there was a need for thorough facility management as well as research on the governor control method in which the traditional PID control method and the machine learning algorithm, a core field of the 4th industry, were fused.