• 제목/요약/키워드: Fuel tank of steel

검색결과 18건 처리시간 0.026초

자동차 연료탱크 모듈의 재활용성 평가 (Recyclability Estimation of Fuel Tank Module in Vechicle)

  • 이철민;이은옥;김하수;이준수;강희용;양성모
    • 한국자동차공학회논문집
    • /
    • 제14권2호
    • /
    • pp.127-135
    • /
    • 2006
  • We analyzed recyclability of the fuel tanks made from steel or aluminum alloy. For a comparison of the fuel tank recyclability, first we had analyzed the process of disassembly in a vehicle and evaluated its disassemblability. Then we evaluated the recyclability for reuse and withdrawal. The processes were more or less same owing to the similarity of fastening method of fuel tank and components. However, the fuel tank of the aluminum alloy was easier (about 5%) to disassembly than the fuel tank of steel. This could be attributed to the differences in weight of steel and aluminium. On light of the withdrawal and reuse, the fuel tank made up of steel needed to plate with zinc or lead due to its anti-corrosiveness. Hence, it required additional processes. In this paper, we were explaining the results of our on going research on the recyclability of fuel tanks made of steel and aluminum alloys. The differences that we found between the fuel tank made up of the aluminum alloy and steel were in their weight, recyclability, disassemblability, anticorrosive property, cost and productivity.

지하연료저장탱크의 부식손상 방지에 관한 연구(1) (바다모래에서 부식 손상) (Study on the Prevention of Corrosion Damage for Underground Fuel Stroage Tank(1) (Corrosion Damage under the Sea Sand))

  • 임우조;서동철
    • 수산해양기술연구
    • /
    • 제37권1호
    • /
    • pp.65-70
    • /
    • 2001
  • 바다모래에 의해 뒷채움된 지하연료저장탱크용 연강재의 부식전류밀도, 개로전위, 전식거동 및 연간부식률에 관하여 연구한 결과 다음과 같은 결론을 얻었다. 1) 습바다모래 중에서 비저항이 감소할수록 개로전위는 비전위화되고, 부식전류밀도는 높게 배류된다. 2) 습바다모래의 비저항이 감소할수록 인가전위 부가에 의한 부식전류밀도는 자연전위에서의 부식전류밀도보다 급격히 증가한다. 3) 습바다모래 중에서 비저항이 감소할수록 연간부식률은 선형적으로 증가함으로 지하연료저장탱크에 바다모래로 뒷채움하는 경우 습기가 유입하면 지하연료저장탱크의 부식성은 민감할 것으로 판단된다.

  • PDF

Excellent Seam Weldable Nano-Composite Coated Zn-Ni Plating Steels for Automotive Fuel Tank

  • Jo, Du-Hwan;Yun, Sang-Man;Park, Kee-Cheol;Kim, Myung-Soo;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • 제18권1호
    • /
    • pp.16-23
    • /
    • 2019
  • Steels for automotive fuel tank require unique properties such as corrosion resistance for fuel, welding for joining, forming for press, and painting for exterior. Recently, automakers have been requiring excellent seam weldable steels to enhance manufacturing productivity of fuel tank. Thus, POSCO developed a new type of functional steels coated with nano-composite thin layer on Zn-Ni plating steels. The nano-composite coating solution was prepared by mechanical fine dispersion of solutions consisting of polymeric resin and nano-composite materials in aqueous media. The composite solution was coated on the plating steel surface by using roll coater and cured through induction furnace. These new developed plating steels were evaluated for quality performances such as seam and spot weldability, press formability, and corrosion resistance. These new functional steels coated with nano-composite layer exhibited excellent seam weldability and press formability. Detailed discussion of coating solution and experimental results suggest that nano-sized composite dispersion as coating layer plays a key role in enhancing the quality performance.

IMO Type C LNG 저장 탱크의 단열성능 및 구조적 건전성 평가 (Evaluation of Insulation Performance and Structural Integrity of an IMO Type C LNG Storage Tank)

  • 박희우;박진성;조종래
    • 한국기계가공학회지
    • /
    • 제20권7호
    • /
    • pp.1-7
    • /
    • 2021
  • Restrictions on the emissions of nitrogen oxides, sulfur oxides, carbon dioxide, and particulate matter from marine engines are being tightened. Each of these emissions requires different reduction technologies, which are costly and require many pieces of equipment to meet the requirements. Liquefied natural gas (LNG) fuel has a great advantage in reducing harmful emissions emitted from ships. Therefore, the marine engine application of LNG fuel is significantly increasing in new ship buildings. Accordingly, this study analyzed the internal support structure, insulation type, and fuel supply piping system of a 35 m3 International Maritime Organization C type pressurized storage tank of an LNG-fueled ship. Analysis of the heat transfer characteristics revealed that A304L stainless steel has a lower heat flux than A553 nickel steel, but the effect is not significant. The heat flux of pearlite insulation is much lower than that of vacuum insulation. Moreover, the analysis results of the constraint method of the support ring showed no significant difference. A553 steel containing 9% nickel has a higher strength and lower coefficient of thermal expansion than A304L, making it a suitable material for cryogenic containers.

Corrosion Resistance of Mg-Added Galvannealed Steel Sheets with Nano-Composite Coating

  • Jo, Du-Hwan;Yun, Sang-Man;Paik, Doo-Jin;Kim, Myung-Soo;Hong, Moon-Hi
    • Corrosion Science and Technology
    • /
    • 제19권2호
    • /
    • pp.57-65
    • /
    • 2020
  • As competition among global automakers intensifies, demand for materials that are better in price and performance is increasing. While steel and plastic materials compete for automotive fuel tanks, plastic materials have advantages such as light weight for automobiles. However, they have high prices. Accordingly, in this paper, four types of Zn-X plated steel sheets, electroplating (X = none, Sn) and galvannealed (X = Fe, Fe-Mg), were manufactured and their applicability as a fuel tank material was evaluated. Nano-composite coating solution with good conductivity was treated on the surface of plated steels using a roll coater and then cured through induction furnace to improve corrosion resistance. Quality characteristics such as corrosion resistance, fuel resistance to diverse gasoline and diesel fuels, and seam weldability were evaluated for the above plated steels. Their properties were compared and analyzed with conventional Zn-Ni electroplating steels. Among the above plated steels, Zn-Fe-Mg galvannealed steels coated with nano-composite coating exhibited better properties than other steels. Detailed experimental results suggest that evenly distributed Mg elements on the coating layer play a key role in the enhanced quality performance.

9% Nickel강이 적용된 Type-B LNG 연료탱크 선상가열의 물성 변화에 관한 연구 (A Study on the Variation of Physical Properties of Line-heated for Type-B LNG Fuel Tank with 9% Nickel Steel Plate)

  • 최경신;이지한;홍지웅;정원지
    • 한국기계가공학회지
    • /
    • 제19권7호
    • /
    • pp.89-97
    • /
    • 2020
  • Container vessels continue to grow in size, led by global shipowner. Large ships can be loaded more cargo at a time, reducing the cost of transportation per teu. this eventually leads to economies of sale, in which the production cost per unit decreases with increasing output. in accordance with the 70th Convention of the Marine Environment Protection Committee of the International Maritime Organization, as of January 1, 2020, MARPOL Annex VI Regulation 14.1.3 will be effective. All vessels must be meet these criteria to reduce Sox emissions and reduce NOx emissions by reducing the content of manned sulfur oxides from 3.5% to less than 0.5%, otherwise IACS Member States Entry to the port is denied. in order to do that need to LNG storage tank. in this study characteristic of the material after line heating (600℃,700℃,800℃,900℃) of 9% Ni steel used in the manufacture of LNG fuel tank of ship were verified using by mechanical test. In the heating method by line heating. The initial properties of steel are changed by variables such as temperature, time, speed. The experimental data of line heating presented in this paper confirmed that the initial change of 9% Ni steel could be minimized.

극저온용 강재 용접부 파괴인성 파라메타의 상관성 규명 (Identification of Correlation Between Fracture Toughness Parameters of Cryogenic Steel Weld Joints)

  • 안규백;홍승래;박정웅;노찬승;한일욱
    • Journal of Welding and Joining
    • /
    • 제35권3호
    • /
    • pp.82-87
    • /
    • 2017
  • Recent trends in shipbuilding and offshore industries are a huge increase in the ship size and the exploration and production of oil and natural gas in the arctic offshore region. High performance steel plates are required by these industrial trends. Also in IMO(International Maritime Organization) has begun to regulate of fuel of ship to environmental protection, therefore it is little bit difficult to use bunker-C oil to working ship. As the problem of environmental change such as global warming is emerged, the operation of the ship is considered to be involved in the environmental change problem, and the regulation of environmental pollution is gradually strengthened. As these environmental regulations are strengthened demand for LNG fuel ships is rapidly increasing. Currently, cryogenic steels used in LNG tanks include aluminum alloy, SUS 304, and 9%-Ni steel. Those steels are has high cost to construction of large LNG carrier. The new materials were suggested several steel mills to decrease construction cost and easy construction. The new cryogenic steel should be evaluate safety to applied real structure include LNG ship. Therefore, in this study, fracture toughness of weld joints were investigated with cryogenic steel for application of LNG tank.

금속 및 복합재 CNG 탱크에서의 손상 검출을 위한 음향방출 에너지 기반 위치표정 기술 (Energy Based Source Location by Using Acoustic Emission for Damage Detection in Steel and Composite CNG Tank)

  • 김일식;한병희;박춘수;윤동진
    • 비파괴검사학회지
    • /
    • 제35권5호
    • /
    • pp.332-340
    • /
    • 2015
  • 음향방출기술은 고체내부에 국부적으로 형성된 변형에너지가 급격히 방출되면서 발생하는 탄성파를 이용하는 기술로써 결함의 발생이나 존재하는 결함의 진전을 검출하는 비파괴검사 기법이다. 환경문제로 인해 최근 약 20년 전부터 압축 천연 가스가 자동차 석유 연료의 대안으로 사용되면서 CNG 탱크의 안전성 검사의 필요성 또한 증가하고 있다. 특히 복합재 CNG 탱크에서는 적층된 재료와 방향에 따라 파의 속도나 분산 특성이 달라지므로 매질의 속도에 절대적으로 영향을 받는 종래의 도달 시간차를 이용한 AE 기법으론 결함검출을 하는데 한계가 있다. 따라서 본 연구에서는 스틸실린더인 Type-I과 스틸실린더에 GFRP로 와인딩된 Type-II 시편에서 에너지 기반 contour map 기법을 이용해 종래의 AE기법의 한계를 극복하고 결과를 비교하였다. 그 결과 위치표정이 불가하거나 오차가 컸던 종래의 방법과 달리 에너지 기법은 모든 지점에서 위치표정이 가능했으며 오차 또한 현저히 준 것을 확인할 수 있었다.

점용접 간극이 용접성에 미치는 영향에 관한 연구 (A Study on Effects of Welding Clearance on Spot Weldability)

  • 임재규;양승현;국중하
    • Journal of Welding and Joining
    • /
    • 제20권1호
    • /
    • pp.55-61
    • /
    • 2002
  • The automobile is made up of about twenty thousand parts. Some parts are formed by pressing and combined by spot welding. Among them, steel palate of fuel tank is formed in the metal mold and bending parts are jointed by spot and seam welding. To find weldability conditions of spot welding, clearance between two welding steel plates was made and after spot welding, weldability is evaluated by means of tensile shear load, nugget size and shape. Specimen used in this study was a mild steel of 1.2mm thickness and electrode was Cu-Cr alloy of 6mm diameter. When spot welding started, the clearance of two steel plates was changed 0mm, 3mm and 5mm step by step. The fractured surface of specimen after this test was observed by Optical Microscope to measure microstructure and nugget shape. When clearance of two specimen was 3mm and 5mm, strength and nugget size was decreased and nugget shape was not clear.

Experimental validation of the seismic analysis methodology for free-standing spent fuel racks

  • Merino, Alberto Gonzalez;Pena, Luis Costas de la;Gonzalez, Arturo
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.884-893
    • /
    • 2019
  • Spent fuel racks are steel structures used in the storage of the spent fuel removed from the nuclear power reactor. Rack units are submerged in the depths of the spent fuel pool to keep the fuel cool. Their free-standing design isolates their bases from the pool floor reducing structural stresses in case of seismic event. However, these singular features complicate their seismic analysis which involves a transient dynamic response with geometrical nonlinearities and fluid-structure interactions. An accurate estimation of the response is essential to achieve a safe pool layout and a reliable structural design. An analysis methodology based on the hydrodynamic mass concept and implicit integration algorithms was developed ad-hoc, but some dispersion of results still remains. In order to validate the analysis methodology, vibration tests are carried out on a reduced scale mock-up of a 2-rack system. The two rack mockups are submerged in free-standing conditions inside a rigid pool tank loaded with fake fuel assemblies and subjected to accelerations on a unidirectional shaking table. This article compares the experimental data with the numerical outputs of a finite element model built in ANSYS Mechanical. The in-phase motion of both units is highlighted and the water coupling effect is detailed. Results show a good agreement validating the methodology.