• Title/Summary/Keyword: Fuel ratio

Search Result 2,281, Processing Time 0.029 seconds

Analysis of Performance of Balcony Integrated PV System (발코니 일체형 태양광발전시스템의 발전성능 분석)

  • Kim, Hyun-Il;Kang, Gi-Hwan;Park, Kyung-Eun;So, Jung-Hoon;Yu, Gwon-Jong;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.1
    • /
    • pp.32-37
    • /
    • 2009
  • Photovoltaic(PV) permits the on-site production of electricity without concern for fuel supply or environmental adverse effects. The electrical power is produced without noise and little depletion of resources. So BIPV(Building-Integrated Photovoltaic) system have been increased around the world. Hereby the relative installation costs of the system will be relatively low compared to traditional installations of PV in high-rise buildings. This paper examined possibility of building integrated balcony PV system and analyzed both performance and problems of this system. The system is influenced by conditions such as irradiation, module temperature, shade and architectural component etc. If this BIPV system of 1.1kW is possible the natural ventilation in the summer case, the temperature of PV module decrease and then the efficiency of PV system increase generally. By the results, the annual averaged PR of BIPV system of cold facade type is about 74.7%.

The Selective Oxidation of CO in Hydrogen Rich Stream over Alumina Supported Cu-Ce Catalyst (알루미나에 담지된 Cu-Ce 촉매상에서의 개질수소가스에 포함된 CO의 선택적 산화 반응에 관한 연구)

  • Park, J.W.;Jeong, J.H.;Yoon, W.R.;Lee, Y.W.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.2
    • /
    • pp.155-170
    • /
    • 2003
  • $Cu-Ce/{\gamma}-Al_2O_3$ based catalysts were prepared and tested for selective oxidation of CO in a $H_2$-rich stream(1% CO, 1% $O_2$, 60% $H_2$, $N_2$ as balance). The effects of Cu loading and weight ratio(=Cu/(Cu+Ce)) upon both activity and selectivity were investigated upon the change in temperatures, It was also examined how the activity and selectivity of catalysts were varied with the presence of $CO_2$ and $H_2O$ in the reactant feed. Among the various Cu-Ce catalysts with different catalytic metal composition, Cu-Ce(4 : 16 wf%) /${\gamma}-Al_2O_3$ catalyst showed the highest activity(>$T_{99}$) and selectivities(50-80%) under wide range of temperatures($175-220^{\circ}C$). However, in the Cu-Ce(4 : 16 wt%)/ ${\gamma}-Al_2O_3$, the presence of $CO_2$ and $H_2O$ in the reactant feed decreased the activity and the maximum activity(>$T_{99}$) in terms of reaction temperature moved by about $25^{\circ}C$ toward higher temperature, the $T_{>99}$ window was seen between $210-230^{\circ}C$ (selectivity 50-75%). From $CO_2-/H_2O-TPD$, it can be concluded that the main cause for the decrease in catalytic activity may be attributed to the blockage of the active sites by competitive adsorption of water vapor and $CO_2$ with the reactant at low temperatures.

Production of Biodiesel from High Acid Value Oils using Amberlyst-15 (Amberlyst-15를 이용한 산가가 높은 유지로부터 바이오디젤의 생산)

  • Sim, Yeon-Ju;Kim, Eui-Yong
    • KSBB Journal
    • /
    • v.25 no.5
    • /
    • pp.483-489
    • /
    • 2010
  • Biodiesel has attracted great attention as an alternative renewable energy source for the replacement of petroleumbased diesel fuel, yet its high production cost due to expensive oil feedstock remainsas the major economical obstacle. In this study, we investigated catalysts and reaction conditions for the acid catalyzed pre-conversion of free fatty acid (FFA) to fatty acid methyl ester (FAME) in cheap low-grade oils of high acid value. The NaOH base catalyzed reaction of vegetable oil of the initial acid value of 2 mg KOH/g led to a high FAME conversion above 95.4%, but the conversion abruptly decreased at higher initial acid values. This base catalyzed reaction was practically ineffective displaying the FAME conversion below 15% even at the initial acid value of 10 mg KOH/g by the severe saponification side reaction. Among the various catalysts studied for the pre-conversion of FFA to FAME, Amberlyst-15 was the most effective in reducing the acid value, and the optimum reaction condition identified was $65^{\circ}C$ with oil to methanol ratio of 1:3 and catalyst concentration of 15% (w/w). As the results, great enhancements in the overall biodiesel conversion were achievable via a consecutive reaction of the acid catalyzed FFA pre-conversion to FAME under the optimal condition obtained with Amberlyst-15 followed by the NaOH base catalyzed reaction, far above the extent which was obtainable by the single NaOH catalyzed reaction.

Optimum Ratio between Nafion and 20, 40 wt% Pt/C Catalysts for MEAs (20, 40 wt% Pt/C 촉매를 사용한 MEA제조에서 나피온의 최적비)

  • Jung, Ju-Hae;Jung, Dong-Won;Kim, Jun-Bom
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.1
    • /
    • pp.50-55
    • /
    • 2011
  • To enhance the performance of a MEA (membrane electrode assembly) in a polymer electrolyte membrane fuel cell (PEMFC), optimum contents of Nafion ionomer as electrolyte in the 20 and 40 wt% Pt/C used in electrodes were examined. Variety characterization techniques were applied to examine optimum Nafion contents: cell performance test, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). According to Pt wt% supported on carbon support, it has been observed that polarization, ohmic, and mass transfer resistances were changed so that the cell performance was significantly dependent on the content of Nafion ionomer. Optimum Nafion ionomer contents in the 20 wt% Pt/C and 40 wt% Pt/C were showed 35 wt% and 20 wt%, respectively. This is due to different surface area of the Pt/C catalyst, and formation of triple phase boundary seems to be affected by the Nafion contents.

Synthesis of the BaTiO$_3$ Powders by the Glyscine-Nitrate Process and Its Properties (Part I) (Glycine-Nitrate 법에 의한 BaTiO$_3$ 분말의 합성 및 그 특성(Part I))

  • 박지애;김구대;이홍림;이동아
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.8
    • /
    • pp.857-863
    • /
    • 1998
  • The BaTiO3 powders extensively used as MLCC (Multilayer ceramic capacitor) in electronic ceramic in-dustry were synthesized by GNP (Glycine-Nitrate process) The powders were prepared using carbonate and alkoxide as starting materials and nitric acid was used as a solvent for starting materials as well as an oxidant for combustion. The BaTiO3 powders were synthesized using different amounts of glycine as a fuel for combustion. The characteristics of synthesized powders were examined with helium pycnometer X-ray diffraction(XRD) Brunauer-Emmett-Teller with N2 adsorption and scanning electron microscopy(SEM). It was found that single phase BaTiO3 could be formed when the as-synthesized powders were heat-treated at 100$0^{\circ}C$ When the glycine/cation molar ratio was 1,2 specific surface area was 24m2/g

  • PDF

A Study on the Comparison of the Rolling and Resistance Performance for the Stepped-Hull with attached a Stern-body by using Sea Model-Test (실 해상모형시험을 이용한 선미 보조동체 장착 Stepped hull 선형의 횡동요 및 저항특성 비교 연구)

  • Jo, Hyo-Jae;Sohn, Kyoung-Ho;Park, Chung-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.813-818
    • /
    • 2007
  • There are the C.W.C and Towing Tank to the model-test equipments of the boat. A model testing of the high speed boat have a difficult in the performance verification because of very a small the scale-ratio of the ship-model and restricted by flow-velocity of the C.W.C and X-carriage velocity of the T.T. In general, the stepped hull boat is a high of fuel-efficiency because of the resistance reduction by a small wetted surface-area in correspond without stepped-hull boat. But It have a tendency to be bad the rolling performance by reduced stern wetted-area In this paper, the high speed stepped planning-boats with & without attached a stern body were performed to compare the effect of resistance and rolling performance by using sea model-test method.

Study on the Development of High-speed Rotary Tilling System for Power Tiller (경운기의 고속 로터리 경운시스템 개발에 관한 연구)

  • 이승규;김성태;우종구;김재영
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.423-430
    • /
    • 2001
  • The purpose of this study is to develop high-speed rotary tillage system for a power tiller by improving the rotary blade and the power train of transmission. Mechanical structure of gear train of rotary drive of conventional power tiller was simplified so that power can be transmitted directly from second shaft to tilling speed change shaft by rotating freely the transfer gear which changes the direction of rotation of shafts using needle bearing installed into middle shaft. A new gear train suitable for the single-edged rotary blade and high-speed rotary drive was developed with the rotational speed of rotary shaft faster than 7.5% at 1st-speed and 1.4% at 2nd-speed the one of conventional system by changing the numbers of teeth of gears of middle shaft, tilling speed change shaft and PTO shaft. Using the developed gear train for high-speed rotary drive, field tests were performed to compare tillage performances by the developed single-edged blade and by the conventional double-edged blade. The results showed that the performances by the single-edged blade compared with the one by the double-edged blade was improved about 18% in field capacity, about 34% in fuel consumption, and 9.4% in soil crushing ratio. Therefore, it may be concluded that tillage performance by the single-edged blade was improved compared to the one by the conventional blade. Evaluation of the developed system consisting of single-edged blade and gear train for high-speed rotary drive in field revealed that tillage performance of the developed system was similar to the one of field test conducted using the system consisting of single-edged blade and gear train for rotary drive of conventional power tiller However, considering the higher cone index of the upland field where evaluation was carried out compare to the one of the ordinary paddy field, it may be concluded that tillage performance of the developed rotary tilling system better than the one of conventional system.

  • PDF

Tillage Characteristics of the Single-Edged Rotary Blade (단면형 로터리경운날의 경운 특성)

  • 이승규;김성태;우종구
    • Journal of Biosystems Engineering
    • /
    • v.25 no.5
    • /
    • pp.369-378
    • /
    • 2000
  • The purpose of this study is to developed high-efficient rotary tillage system for a power tiller by improving the rotary blade. A kind of the rotary blade with single-edged blade(DS) was developed that requires lower tillage energy than conventional double-edged blade(CD) on the design theory for Japanese rotary blade. In order to find out the tillage characteristics between the single-edged blade and the double-edged blade for power tiller, experiments were performed in soil-bins which were filled up clay loam, loam and sandy loam, and then analyzed the effects of the factors such as soil texture, travelling speed, rotational speed, and tillage depth to each of the blades. And field tests were carried out to compare tillage performances of the two blades using rotary cultivator driven by conventional power tiller. The results of this study were summarized as follows; 1) On the soil bin experiment, it was found that tillage torque of the single-edged blade was less than the ones of the double-edged blade. The decreasing ratios of maximum tillage torque of the single-edged blade to the ones of the double-edged blade were 1 to 8% at clay loam, 5 to 20% at loam and 9 to 31% at sandy loam, respectively. 2) By the field tests, that the tillage performances with the single-edged blade compared with the double-edged blade was improved about 19% in field capacity, about 34% in fuel consumption, and 12.5% in soil breaking ratio. Furthermore, the fluctuation of engine speed, the variation of exhaust gas temperature, and the amount of soil clogging on the blade and straw wound on the rotary shaft showed lower values with the developed blade than the conventional blade. So, it may be concluded that tillage performance by the developed single-edged blade was improved compared with the one by the conventional double-edged blade.

  • PDF

A Study on the Property and Performance Characteristics of Different Kind Engine Oil by Endurance Test of Heavy-duty Diesel Engine (대형 디젤엔진 내구 시험에 의한 다른 종류 엔진오일의 물성 및 성능 특성에 관한 연구)

  • Lee, Minho;Kim, Jeonghwan;Song, Hoyoung;Kim, Giho;Ha, Jonghan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.48-56
    • /
    • 2014
  • Engine oil is an oil used for lubrication of various internal combustion engines. The main function is to reduce wear on moving parts; it also cleans, inhibits corrosion, improves sealing, and cools the engine by carrying heat away from moving parts. In engines, there are parts which move against each other. Otherwise, the friction wastes the useful power by converting the kinetic energy to heat. Those parts were worn away, which could lead to lower efficiency and degradation of the engine. It increases fuel consumption, decreases power output, and can induce the engine failure. This study was conducted to evaluate the relation between engine oil property changes and engine performance for the diesel engine. This test was performed by using 12L, 6 cylinder, heavy duty engines. Low SAPS 10W30 engine oil (two type engine oils) was used. Test procedure and method was in accordance with the modified CEC L-57-T97 (OM441LA) method. In this study, TAN, TBN, KV and metal components, engine power, blowby gas, A_F were presented to evaluate the relation with engine oil property changes and engine performance. TAN, TBN, KV and metal We found that the components were generally increased but engine performance did not change. This results mean that property changes did not affect on engine performance because those were not enough to affect engine performance.

Development of 30-Tonf LOx/Kerosene Rocket Engine Combustion Devices(II) - Gas Generator (추력 30톤급 액체산소/케로신 로켓엔진 연소장치 개발(II)-가스발생기)

  • Choi, Hwan-Seok;Seo, Seong-Hyeon;Kim, Young-Mog;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.1038-1047
    • /
    • 2009
  • The development process of a gas generator for a 30-tonf pump-fed space liquid rocket engine is described. Starting from the development of an injector, followed by subscale and full-scale test specimens, the development of LOx/kerosene fuel-rich gas generator has been concluded successfully. Various analytical methods have been utilized in the course of design and the performance requirements have been verified experimentally through ignition tests, combustion performance and stability assessment tests and duration tests. The gas generator has proven its workability and stability within a defined operation window of varying chamber pressure and mixture ratio and demonstrated compliance to the performance and life time requirements.