• Title/Summary/Keyword: Fuel ratio

Search Result 2,280, Processing Time 0.033 seconds

Effects of Hydrogen Ratio on Combustion and Emissions Characteristics of Hydrogen/Diesel Dual-Fuel Engine (수소의 혼합 비율에 따른 수소/디젤 혼소 엔진의 연소 및 배기 특성 파악)

  • Park, Hyunwook;Bae, Choongsik
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.103-106
    • /
    • 2014
  • The effects of hydrogen ($H_2$) ratio on combustion and emission characteristics in a $H_2/diesel$ dual-fuel engine were investigated. Dual-fuel strategy was applied to improve the control of combustion phasing. The combustion phasing was retarded with increasing $H_2$ fraction. This can be explained by both reduced diesel concentration and chemical effect of $H_2$, which reduce the heat release rate during the low temperature reaction stage. Hydrocarbon and carbon monoxide emissions of the engine were decreased drastically when $H_2$ ratio was increased.

  • PDF

Calculation of the flow field in the cylinder of the diesel engine for different bowl shapes and swirl ratios (보올형상과 선회비에 따른 디젤기관 실린더내의 유동장 해석)

  • 최영진;양희천;유홍선;최영기
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.50-66
    • /
    • 1991
  • There are many factors which influence on the performance of a diesel engine. The piston bowl shape and swirl ratio are important factors to enhance the fuel-air mixing and flame propagation. In this study, calculations of the flow field in the cylinder of the diesel engine were carried out using the CONCHAS-SPRAY code for different bowl shapes and swirl ratios. In the case of constant swirl ratio, vortices which affect fuel-air mixing, evaporation and flame propagation are generated more strongly and consistently in the bowl-piston type combustion chamber than in the flat piston type. With this strong squish effect, injected fuel droplets are widely diffused and rapidly evaporated in the bowl-piston type combustion chamber. Especially a strong squish is developed and large and strong vortices are generated in the edge cutted bowl piston chamber. As the swirl ratio increases, it is found that a large and strong squish and vortices are generated in the combustion chamber and also fuel droplets are diffused into the entire combustion chamber.

  • PDF

A Study on the Characteristics of Gasoline Engine Performance Equipped with Perforated Throttle Valve (다공 스로틀밸브 장착 가솔린기관의 성능 특성에 관한 연구)

  • Cho, B.O.;Lee, C.S.
    • Journal of ILASS-Korea
    • /
    • v.1 no.2
    • /
    • pp.50-56
    • /
    • 1996
  • In an fuel injection type gasoline engine, atomization of fuel droplet and mixture formation process are very important to understand engine combustion efficiency, and also has influence directly on the decision of engine performance and pollutant emission. In this study, perforated throttle valve instead of solid type throttle valve was developed and equipped to an SPI engine to promote secondary atomization and good droplet-air mixture formation. From the engine performance lest. it was verified that the case of perforated valve kas more advantages in each experimental parameters such as in cylinder gas pressure, mass burnt ratio, fuel consumption rate, and pollutant emission characteristics than that of solid one equipped. No matter what the same perforated valve, there are some distinct results in engine performance characteristics according to the perforate ratio.

  • PDF

A Study on Effect of EGR upon Fuel Consumption Rate and NOx Emission in Diesel Engines (디젤기관의 연료소비율 및 질소산화물 배출물에 미치는 EGR의 영향에 관한 연구)

  • Bae, M.W.;Lim, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.76-88
    • /
    • 1995
  • The effects of exhaust gas recirculation(EGR) on the characteristics of NOx emissions and specific fuel consumption rate have been investigated using an eight-cylinder. four cycle. direct injection diesel engine operating at several loads and speeds. The theoretical NO formation concentration is calculated with the equivalence ratio as a parameter of flame temperature to study the effect of EGR on NOx emissions in the diesel combustion. The experiments in this study are conducted on the fixed fuel injection timing of $38^{\circ}$ BTDC regardless of experimental conditions. It is found that the specific fuel consumption rate is slightly increased with EGR rate. and NOx emissions are markedly reduced owing to the drop of the incoming oxygen concentratio and the increase of equivalence ratio as the EGR rate increases.

  • PDF

Experimental Study to Improve the Performance and Emission of CNG Dual Fuel Diesel Engine Mixed with Hydrogen (CNG Dual Fuel 디젤기관의 성능과 배출가스 개선을 위한 수소혼합 실험)

  • ;Masahiri Shioji
    • Journal of Energy Engineering
    • /
    • v.9 no.2
    • /
    • pp.83-88
    • /
    • 2000
  • In this study, the performance and pollutant emission of CNG engine using diesel oil as a source of ignition, so called CNG dual fuel diesel engine is considered by experiment. One of the unsolved problems of the natural gas dual fuel engine is that there is too much exhaust of total hydrocarbon (THC) at a low equivalent mixture ratio. To fix it, a natural gas mixed with hydrogen was applied to engine test. The results showed that the higher the mixture ratio of hydrogen to natural gas, the higher the combustion efficiency. and when the amount of the intake air is reached to 90% of WOT, the combustion efficiency was promoted. But, like a case making the injection timing earlier, the equivalent mixture ratio for the knocking limit decrease and the produce of NOx increases.

  • PDF

Numerical analysis on the characteristics of disel spray for variation of injection spray angle and swirl ratio. (분사각 및 스월 변화에 따른 디젤분무의 특성에 관한 수치 해석)

  • Jung H.;Cha K. S.;Park C. G.
    • Journal of computational fluids engineering
    • /
    • v.5 no.3
    • /
    • pp.1-7
    • /
    • 2000
  • In high-pressure diesel engine, the injected fuel spray impinges on the piston cavity surface due to the short distance between the injection nozzle and the cavity wall. The behavior of the impinging spray has the great influence on the dispersion of fuel, the evaporation, and the mixture formation process. In this study, the numerical simulation using the GTT code was performed to study the gas flows, the spray behaviors, and the fuel vapor distributions in the combustion of a D.I engine for variation of spray angle and swirl ratio.

  • PDF

Effects of Fuel-Air Unmixedness on Lean Premixed Combustion Characteristics (연료-공기 비혼합도가 희박예혼합 연소 특성에 미치는 영향)

  • Kim, Dae-Hyun;Lee, Jong-Ho;Jeon, Chung-Hwan;Chang, Young-June
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.133-139
    • /
    • 2002
  • The lean premixed technique has been proven very efficient in reducing NOx emissions from gas turbine combustors. However combustion instability is susceptible to occur in lean premixed combustor. So laboratory-scale dump combustor was used to understanding the underlying mechanisms causing combustion instabilities. In this study, tests were conducted at atmospheric pressure and inlet air was up to $360^{\circ}C$ with natural gas. The observed instability was a longitudinal mode with a frequency of ${\sim}341.8Hz$. At selected unstable conditions, phase-resolved OH chemiluminescence images were captured to investigate flame structure with various equivalence ratio. Combustion instability was observed to occur at higher value of equivalence ratio(>0.69). This study was performed to investigate the effects of equivalence ratio and fuel split measuring NOx and acoustic wave. The results reveal the effect of fuel-air unmixedness on lean premixed combustor.

  • PDF

Experimental Study on Supersonic Combustor using Inclined Fuel Injection with the Cavity, Part 2 : Pressure Measurement (공동 상류 경사 분사를 이용한 초음속 연소기의 실험적 연구, Part 2 : 압력 측정)

  • Jeong, Eun-Ju;Jeung, In-Seuck;O'Byrne, Sean;Houwing, A.F.P
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.1
    • /
    • pp.21-27
    • /
    • 2007
  • The supersonic combustion experiments are carried out using T3 free-piston shock tunnel. Different shock tube fill pressures have various inflow conditions. $15^{\circ}$ inclined hydrogen fuel injection is located before the cavity. Oblique shock is generated at the trailing edge of the cavity and reflects off the top and bottom wall. For non-reacting flow, static pressures in low equivalence ratio are similar to those in no fuel injection. As equivalence ratio is increased, static pressures are increased in the duct. In the similar equivalence ratio, static pressures are increased when total enthalpy is decreased. For reacting flow, the flame is occurred near the cavity. The combustion is weak locally in the middle of the duct. The up and down pressure distribution in the duct means that the supersonic combustion is generated.

  • PDF

A Development of an 3.4L-class Diesel-LNG Dual Fuel Engine for Farming Machine (3.4L 급 농기계용 디젤-천연가스 혼소 엔진 개발)

  • Sim, Juhyen;Ko, Chunsik;Lee, Sangmin;Lee, Okjae;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.187-190
    • /
    • 2012
  • An experimental study was performed to provide the effect of PM reduction and the improvement of diesel alternative ratio utilizing diesel-natural gas dual-fuel combustion mode in a retrofit 3.4-liter diesel engine. In order to achieve the same power as the original diesel engine, engine control unit (ECU) of the dual-fuel engine was calibrated. As a result, diesel alternative ratio was found that the maximum value of diesel alternative ratio was about 96%. Finally PM emission experiment was performed in C1-8 mode cycle and it was shown PM emission was extremely reduced down to $7.42{\ast}10^{-7}g/kWh$ comparing with mechanical diesel engine.

  • PDF

An Experimental Study on the Characteristics of NOx Emission in Reburning Process (재연소 과정의 NOx 발생특성에 관한 실험적 연구)

  • Park, Jong-Il;Ahn, Kook-Young;Kim, Han-Seok;Son, Min-Gyu;Kim, Yong-Mo
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.698-703
    • /
    • 2000
  • The characteristics of NOx emission in reburning process have been experimentally studied. The design point of burner is creative of three distinct reaction zones; a primary flame zone that NOx producted, reburn zone to reduce the primary zone NOx and burnout zone. Liquefied Petroleum Gas(LPG) was used as main and reburn fuels. Process parameters investigated included main/reburn fuel ratio, primary/secondary air ratio, reborn fuel injector position and different designed quarl. The NOx emission characteristic of aerodynamic designed burner relied on reborn fuel ratio and was slightly affected by a reburn fuel injector position and quarl shape.

  • PDF