• Title/Summary/Keyword: Fuel process

Search Result 2,733, Processing Time 0.034 seconds

Sensitivity Analysis of Fabrication Parameters for Dry Process Fuel Performance Using Monte Carlo Simulations

  • Park Chang Je;Song Kee Chan;Yang Myung Seung
    • Nuclear Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.338-345
    • /
    • 2004
  • This study examines the sensitivity of several fabrication parameters for dry process fuel, using a random sampling technique. The in-pile performance of dry process fuel with irradiation was calculated by a modified ELESTRES code, which is the CANDU fuel performance code system. The performance of the fuel rod was then analyzed using a Monte Carlo simulation to obtain the uncertainty of the major outputs, such as the fuel centerline temperature, the fission gas pressure, and the plastic strain. It was proved by statistical analysis that for both the dry process fuel and the $UO_2$ fuel, pellet density is one of the most sensitive parameters, but as for the fission gas pressure, the density of the $UO_2$ fuel exhibits insensitive behavior compared to that of the dry process fuel. The grain size of the dry process fuel is insensitive to the fission gas pressure, while the grain size of the $UO_2$ fuel is correlative to the fission gas pressure. From the calculation with a typical CANDU reactor power envelop, the centerline temperature, fission gas pressure, and plastic strain of the dry process fuel are higher than those of the $UO_2$ fuel.

Microstructure and Corrosion Behavior of Zr Alloys with Manufacturing Process (핵연료피복관용 Zr 합금의 제조공정에 따른 미세조직 및 부식거동)

  • Kim, H.G.;Choi, B.K.;Kim, K.T.;Kim, S.D.;Park, C.H.;Jeong, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.5
    • /
    • pp.288-296
    • /
    • 2005
  • The corrosion behaviors of Zr-based alloys were very sensitive to their microstructures which were determined by manufacturing process. The specimens of Zr-based alloy named as HANA-4 for nuclear fuel cladding were investigated in order to get the optimized manufacturing process such as the intermediate annealing temperature and cold working steps after the ${\beta}$ quenching. From the microstructural analysis, cold worked microstructure of the samples was changed to the recrystallized microstructure by performed process. The corrosion behaviors of HANA-4 alloy were affected by the different manufacturing process. The ${\beta}$-Zr phase was formed in the matrix and the Nb concentration in the ${\beta}$-Zr phase was increased as progressing the manufacturing process. So, it was found that the corrosion rate of HANA-4 alloy was affected by the Nb concentration in the matrix.

Graphic Simulator for Analyzing the Remote Operation of the Advanced Spent Fuel Conditioning Process

  • Song, Tai-Gil;Kim, Sung-Hyun;Lee, Jong-Ryul;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1319-1322
    • /
    • 2003
  • KAERI is developing the Advanced Spent Fuel Conditioning Process (ACP) as a pre-disposal treatment process for spent fuel. Equipment used for such a spent fuel recycling and management process must operate in intense radiation fields as well as in a high temperature. Therefore, remote maintenance has a played a significant role in this process because of combined chemical and radiological contamination. Hence suitable remote handling and maintenance technology needs to be developed along with the design of the process concepts. To do this, we developed the graphic simulator for the ACP. The graphic simulator provides the capability of verifying the remote operability of the process without fabrication of the process equipment. In other words, by applying virtual reality to the remote maintenance operation, a remote operation task can be simulated in the graphic simulator, not in a real environment. The graphic simulator will substantially reduce the cost of the development of the remote handling and maintenance procedure as well as the process equipment, while at the same time producing a process and a remote maintenance concept that is more reliable, easier to implement, and easier to understand.

  • PDF

Ammonium uranate hydrate wet reconversion process for the production of nuclear-grade UO2 powder from uranyl nitrate hexahydrate solution

  • Byungkuk Lee ;Seungchul Yang;Dongyong Kwak ;Hyunkwang Jo ;Youngwoo Lee;Youngmoon Bae ;Jayhyung Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2206-2214
    • /
    • 2023
  • The existing wet reconversion processes for the recovery of scraps generated in manufacturing of nuclear fuel are complex and require several unit operation steps. In this study, it is attempted to simplify the recovery process of high-quality fuel-grade UO2 powder. A novel wet reconversion process for uranyl nitrate hexahydrate solution is suggested by using a newly developed pulsed fluidized bed reactor, and the resultant chemical characteristics are evaluated for the intermediate ammonium uranate hydrate product and subsequently converted UO2 powder, as well as the compliance with nuclear fuel specifications and advantages over existing wet processes. The UO2 powder obtained by the suggested process improved fuel pellet properties compared to those derived from the existing wet conversion processes. Powder performance tests revealed that the produced UO2 powder satisfies all specifications required for fuel pellets, including the sintered density, increase in re-sintered density, and grain size. Therefore, the processes described herein can aid realizing a simplified manufacturing process for nuclear-grade UO2 powders that can be used for nuclear power generation.

Application of the Digital Mockup to Preliminary Analysis the Remote Maintainability of ACP

  • Song, Tai-Gil;Kim, Sung-Hyun;Park, Byung-Suk;Yoon, Ji-Sup;Lee, Sang-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.363-366
    • /
    • 2004
  • KAERI is developing the Advanced Spent Fuel Conditioning Process (ACP) as a pre-disposal treatment process for spent fuel. In this process, the management process must operate in intense radiation fields as well as in a high temperature. Therefore, remote maintenance has played a significant role in this process. Hence suitable remote handling and maintenance technology needs to be developed along with the design of the process concepts. To do this, we developed the digital mockup for the ACP. The digital mockup provides the capability of verifying the remote operability of the process without fabrication of the process equipment. In other words, by applying virtual reality to the remote maintenance operation, a remote operation task can be simulated in the digital mockup. Through utilizing this graphic simulation in this digital mockup, general guidelines can be established for designing equipment intended for remote handling and maintenance. Also, the designer of the equipment that must be remotely maintained should ensure that there is adequate access to the process equipment. The graphic simulator will substantially reduce the cost of the develo363pment of the remote handling and maintenance procedure as well as the process equipment.

  • PDF

Production of Fuel Bioethanol Using 2-Step Pressure Swing Absorption Process (2단계 PSA(Pressure Swing Absorption) 공정을 이용한 연료용 바이오에탄올 생산)

  • Jeon, Hyungjin;Go, Kyung-Mo;Jeong, Jun-Seong;Choi, Gi-Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.111.1-111.1
    • /
    • 2011
  • Recently, comsumption of fossil fuel is causing many problems(oilflation, global warming, environmental pollution). For this reason Renewable energy is now becoming the center of interest as a solution to these problems. Bioethanol, especially, is able to substitute petroleum as fuel; making it a viable and promising renewable energy. In order to production of fuel bioethanol, Dehydration process is essential. Azeotropic distillation, extractive and pressure swing absorption(PSA) process are some of possible dehydration process, out of which, PSA process is attractive since it required less energy and lower setup cost. In this study, we produced fuel bioethanol using 2-step PSA(3 bed + 2 bed) process for more efficient and economical process. Through this study, we produced fuel bioethanol using 2-step PSA process and concentration of fuel bioethanol was 99.54wt%(feed ethanol: 92.4wt%). We expected that because of efficient use of absorbents(zeolite), 2 step PSA process contribute to economical operation.

  • PDF

Elastic Modulus Measurement of a Dry Process Fuel Pellet by Resonant Ultrasound Spectroscopy (초음파 공진 분석법을 이용한 건식공정 핵연료 소결체의 탄성계수 측정)

  • 류호진;강권호;문제선;송기찬;정현규;정용무
    • Journal of Powder Materials
    • /
    • v.11 no.4
    • /
    • pp.314-321
    • /
    • 2004
  • The elastic moduli of simulated dry process fuels with varying composition and density were measured in order to analyze the mechanical properties of a dry process fuel pellet. Resonant ultrasound spectroscopy(RUS) which can determine all elastic moduli with one set of measurements for a rectangular parallelepiped sample was used to measure the elastic moduli of UO$_{2}$ and simulated dry process fuel. The simulated dry process fuel showed a higher value of Young's modulus than UO$_2$ due to the presence of metallic precipitates and solid solution elements in the UO$_{2}$ matrix. The correlation between Young's modulus and porosity(P) of simulated dry process fuel was found to be 231.4-651.8 P (GPa) at room temperature. Dry process fuel with a higher burnup showed higher Young's modulus because total content of fission product element was increased.

Development of double injection mold for fuel-tube holder (자동차 연료튜브 홀더용 이중사출 금형·성형기술)

  • Kim, Gun-Hee;Yoon, Gil-Sang;Heo, Young-Moo;Jung, Woo-Chul;Shin, Kwang-Ho
    • Design & Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • Double injection molding process is very efficient molding-method for molding the products which is consist of multi-materials. Fuel-tube holder which is necessary for automobil power train and circulation systems is composed of plastic and rubber materials to minimize the vibration and pulsation noises. In existing process, fuel-tube holder was made by the insert molding process or assembly process after molding. If fuel-tube holder is manufactured by double injection molding process, it may be realize to improve the product quality, efficiency of molding-process and retrenchment of manufacturing cost. In this study, for manufacturing fuel-tube holder by double injection molding process, the analysis of joining characteristics between PA6(polyamide 6) and TPE(thermoplastic elastomer) was executed and the double injectin mold for molding fuel-tube holder with core toggle mechanism was fabricated. Finally, fuel-tube holder was molding using fabricated double injection mold.

  • PDF

In-Cylinder Fuel Distribution Measurements in a Lean Burn Engine (희박연소 엔진의 연소실내 연료분포 특성 연구)

  • Kim, K.S.;Lee, K.Y.
    • Journal of ILASS-Korea
    • /
    • v.4 no.2
    • /
    • pp.19-32
    • /
    • 1999
  • The present study investigated the forms and behaviors of fuel during intake and compression process, and the initial flame stability in a lean burn engine modified as a single cylinder engine equipped with quartz windows for visualization. PLIF(Planar Laser Induced Fluorescence) method with KrF Excimer laser was used for measuring the fuel distributions. The principal design concept of the lean burn nin in this study is the axial stratification in the fuel distribution via fuel injection during intake process and different shapes of intake ports; helical and straight. The experiments showed that fuel flowed in as a vapor state in the early part of intake process and lots of this mixture mated down along the intake valve side cylinder wall, but in the latter part, a lot of fuel flowed in as a liquid state and this fuel stayed in the upper part of cylinder, after that the dense fuel cloud moved upward in the early of part compression process. It became clear that the fuel flowed in via straight port had a important role in the axial fuel stratification.

  • PDF