DOI QR코드

DOI QR Code

Elastic Modulus Measurement of a Dry Process Fuel Pellet by Resonant Ultrasound Spectroscopy

초음파 공진 분석법을 이용한 건식공정 핵연료 소결체의 탄성계수 측정

  • Published : 2004.08.01

Abstract

The elastic moduli of simulated dry process fuels with varying composition and density were measured in order to analyze the mechanical properties of a dry process fuel pellet. Resonant ultrasound spectroscopy(RUS) which can determine all elastic moduli with one set of measurements for a rectangular parallelepiped sample was used to measure the elastic moduli of UO$_{2}$ and simulated dry process fuel. The simulated dry process fuel showed a higher value of Young's modulus than UO$_2$ due to the presence of metallic precipitates and solid solution elements in the UO$_{2}$ matrix. The correlation between Young's modulus and porosity(P) of simulated dry process fuel was found to be 231.4-651.8 P (GPa) at room temperature. Dry process fuel with a higher burnup showed higher Young's modulus because total content of fission product element was increased.

Keywords

References

  1. TID-26711-P1, National Technical Information Service Fundamental Aspect of Nuclear Reactor Fuel Elements, D. R. Olander
  2. Mechanical Metallurgy G. E. Dieter
  3. Ann. d Phys. v.4 E. Gruneisen
  4. Can. J. Res. v.2 R. W. Boyle;D. O. Sproule https://doi.org/10.1139/cjr30-001
  5. J. Acoust. Soc. Am. v.20 D. L. Arenberg https://doi.org/10.1121/1.1906343
  6. J. Appl. Phys v.19 W. Roth https://doi.org/10.1063/1.1697896
  7. AECU-203 H. L. Laquer
  8. J. Acoust. Soc. Am. v.22 H. J. McSkimin https://doi.org/10.1121/1.1906618
  9. RU Spec User's Manual
  10. J. Acoust. Soc. Am. v.49 H. H. Demarest, Jr. https://doi.org/10.1121/1.1912415
  11. J. Phys. Earth v.24 I. Ohno https://doi.org/10.4294/jpe1952.24.355
  12. Acta Mater v.44 F. Chu;M. Lei;S. A. Maloy;J. J. Petrovic;T. E. Mitchell https://doi.org/10.1016/1359-6454(95)00442-4
  13. J. Kor. Nuc. Soc. v.28 K. W. Song;Y. H. Kim;B. G. Kim;J. W. Lee;H. S. Kim;M. S. Yang;H. S. Park
  14. Physica B v.183 A. Migliori https://doi.org/10.1016/0921-4526(93)90048-B
  15. MATPRO-Version, NUREG/CR-0497, TREE-1280, R3 D. L. Hagrman;G. A. Reymann;(eds.)
  16. ANL-5053 W. A. Lambertson;J. H. Handwerk
  17. J. Am. Ceram. Soc. v.55 J.T.A. Roberts;Y. Ueda https://doi.org/10.1111/j.1151-2916.1972.tb11233.x
  18. J. Nucl. Mater. v.33 A. Padel;C. de Novion https://doi.org/10.1016/0022-3115(69)90006-3
  19. Fuel Elements Conference, TID-7546 J. Belle;B. Lustman
  20. J. Nucl. Mater. v.37 A. R. Hall https://doi.org/10.1016/0022-3115(70)90161-3
  21. Soviet Atomic Energy v.40 V. M. Baranov(et al.) https://doi.org/10.1007/BF01119389
  22. AERE-M 2565 J. Boocock;A. S. Furzer;J. R. Matthews
  23. J. Nucl. Mater. v.16 J. B. Wachtmant, Jr.;M. L. Wheat;H. J. Anderson;J. L. Bates https://doi.org/10.1016/0022-3115(65)90089-9
  24. J. Nucl. Mater. v.178 no.191 P. G. Lucuta;R. A. Verrall;Hj. Matzke;B. J. Palmer
  25. J. of Nucl. Mater. v.301 K. H. Kang;H. J. Ryu;K. C. Song;M. S. Yang https://doi.org/10.1016/S0022-3115(01)00712-7
  26. J. Alloys and Compounds v.327 S. Yamanaka;S. Yoshida;K. Kurosaki;M. Uno;K. Yamanoto;T. Namekawa https://doi.org/10.1016/S0925-8388(01)01557-2
  27. 7th Inter. Conf. on CANDU Fuel D. Laux;G. Despaux;D. Baron;J. Spino
  28. J. Spino, J. Nucl;Mater. v.324 M. C. Pujol;M. Idiri;L. Havela;S. Heathman https://doi.org/10.1016/j.jnucmat.2003.10.002
  29. J. Nucl. Mater. v.322 J. Spino;J. Cobos-Sabate;F. Rousseau https://doi.org/10.1016/S0022-3115(03)00328-3

Cited by

  1. Progress of the DUPIC Fuel Compatibility Analysis - IV: Fuel Performance vol.157, pp.1, 2007, https://doi.org/10.13182/NT07-A3798