• Title/Summary/Keyword: Fuel moisture

Search Result 196, Processing Time 0.028 seconds

Stabilization Characteristics of Upgraded Coal using Palm Acid Oil

  • Rifella, Archi;Chun, Dong Hyuk;Kim, Sang Do;Lee, Sihyun;Rhee, Youngwoo
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.299-307
    • /
    • 2016
  • These days, coal is one of the most important energy resources used for transportation, industry, and electricity. There are two types of coal: high-rank and low-rank. Low-rank coal has a low calorific value and contains large amounts of useless moisture. The quality of low-rank coal can be increased by simple drying technology and it needs to be stabilized by hydrocarbons (e.g. palm acid oil, PAO) to prevent spontaneous combustion and moisture re-adsorption. Spontaneous combustion becomes a major problem during coal mining, storage, and transportation. It can involve the loss of life, property, and economic value; reduce the quality of the coal; and increase greenhouse gas emissions. Besides spontaneous combustion, moisture re-adsorption also leads to a decrease in quality of the coal due to its lower heating value. In this work, PAO was used for additive to stabilize the upgraded coal. The objectives of the experiments were to determine the stabilization characteristic of coal by analyzing the behavior of upgraded coal by drying and PAO addition regarding crossing-point temperature of coal, the moisture behavior of briquette coal, and thermal decomposition behavior of coal.

Development of Prediction Model of Fuel Moisture Changes in the Spring for the Pine Forest Located the Yeongdong Region(Focused on the Fallen Leaves and Soil Moisture Level) (영동지역 봄철 소나무림에서 연료습도변화 예측모델 개발(낙엽 및 토양습도를 중심으로))

  • Lee, Si-Young;Kwon, Chun-Geun;Lee, Myung-Woog;Lee, Hae-Pyeong;Cha, Joo-Young
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.67-75
    • /
    • 2010
  • The fuel moisture changes accompanying with the elapsed days after a rainfall is very important to predict the risk of forest fire and make a good use of forest fire guard. So, to investigate the conditions for the risk of forest fire, it was studied the risk of forest fire for fallen leaves level, rotten level, and soil level after more-than-5 mm-rainfall according to the different forest density of pine forests which were located in Yeong-dong region in the Spring of 2007. The result of the study showed that the around 17% of fuel moisture which was the risky level for forest fire was reached after three days of a rainfall in the coarse dense forest region and after five days in the medium or highly dense forest region. However, for the rotten level represents more than 30% of fuel moisture even after six days after the rainfall, and the lower and upper level of the soil represented a slight or almost no changes. Based on the result, the prediction model ($R^2$=0.56~0.87) for the change of fuel moisture was developed, and it was examined by applying to actual meteorological measurements in the same period of 2008. It showed a meaningful result of 1% level of distinction.

Crown Fuel Characteristics of Japanese Red Pine (Pinus densiflora) in Mt. Palgong, Daegu (대구 팔공산 지역의 소나무 수관층 연료 특성)

  • Koo, Kyo-Sang;Lee, Byung-Doo;Won, Myoung-Soo;Lee, Myung-Bo
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.1
    • /
    • pp.52-56
    • /
    • 2010
  • Crown fuel characteristics such as crown bulk density, crown base height, and fuel moisture content of Japanese red pine were analyzed. Ten trees in Mt. Palgong at Daegu, were destructively sampled and their crown fuels were weighed separately for each fuel category. Fuel content of live and dead crown component were 53%, and 15.3%, respectively. Foliar moisture content was 56%. Needles and twigs with diameter less than 1cm diameter accounted for 16.2%, 55% of total and crown fuel load. Average crown bulk density of Japanese red pine was 0.24 kg/$m^3$, effective crown fuel bulk density was 0.1325 kg/$m^3$.

A Study on a Development of Automated Measurement Sensor for Forest Fire Surface Fuel Moistures (산불연료습도 자동화 측정센서 개발에 관한 연구)

  • YEOM, Chan-Ho;LEE, Si-Young;PARK, Houng-Sek;WON, Myoung-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.917-935
    • /
    • 2020
  • In this study, an automated sensor to measure forest fire surface fuel moistures was developed to predict changes in the moisture content and risk of forest fire surface fuel, which was indicators of forest fire occurrence and spread risk. This measurement sensor was a method of automatically calculating the moisture content of forest fire surface fuel by electric resistance. The proxy of forest fire surface fuel used in this sensor is pine (50 cm long, 1.5 cm in diameter), and the relationship between moisture content and electrical resistance, R(R:Electrical resistance)=2E(E:Exponent of 10)+13X(X:Moisture content)-9.705(R2=0.947) was developed. In addition, using this, the software and case of the automated measurement sensor for forest fire surface fuel moisture were designed to produce a prototype, and the suitability (R2=0.824) was confirmed by performing field monitoring verification in the forest. The results of this study would contribute to develop technologies that can predict the occurrence, spread and intensity of forest fires, and are expected to be used as basic data for advanced forest fire risk forecasting technologies.

The model development and verification for surface branch wood fuels moisture prediction after precipitation during spring period at the east coast region (영동지역 봄철 소나무림에서 강우후 지표연료 직경별 연료습도변화 예측모델 개발 및 검증)

  • Lee, Si-Young;Lee, Myung-Woog;Kwon, Chun-Geun;Yeom, Chan-Ho;Lee, Hae-Pyeong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.434-437
    • /
    • 2008
  • In this study, we developed a fuel moisture variation prediction model on each day after precipitation during a spring forest fire exhibition period. For this research, we selected plots in pine forest on Sam-Chuck si and Dong-hae si in Kangwon do according to a forest density(low, mediate, high) and classified a surface woody fuel by a diameter.(below 0.6cm, $0.6{\sim}3cm$, $3{\sim}6cm$, and above 6cm). A validity of this model was verified by applying a fuel moisture variation after precipitation in this spring. In the result, $R^2$ was $0.76{\sim}0.92$. This model will be a useful for improvement of a forest fire danger rate forcast through a prediction a fule moisture in forest.

  • PDF

Performance Test of PEMFC with Hollow Fiber Membrane (중공사막 가습에 따른 PEMFC의 성능 평가)

  • Lee, Ho-Yeol;Chon, Kwang-Wu;Park, Chang-Kwon;Oh, Byeong-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.1
    • /
    • pp.82-91
    • /
    • 2005
  • Polymer membrane needs to maintain appropriate moisture. Insufficient moisture causes low conduction of hydrogen ion because of increased contact resistance between electrode and membrane by shrinking membrane, and abundant moisture decreases fuel cell performance as difficulty of diffusion reacting gas. Therefore, water controlling system is very consequential for the polymer membrane fuel cell. If hollow fiber membrane humidification is used between fuel and air lines, it is possible to supply heat to fuel and air by using thermal exchanger. It can supply appropriate humidity depending on operating temperature, and can recover heat from exhaust gas which contains water vapor and air. Because of simple structure of humidification system, this system can be easily applied in the PEMFC and cut down cost.

Thermal and Physicochemical Characteristics of Solid Fuel Extruded with Cattle Feedlot Manure (우분 성형 고형연료의 열 및 물리화학적 특성)

  • Lee, Gwi-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.35 no.1
    • /
    • pp.64-68
    • /
    • 2010
  • Cattle feedlot manure could be used effectively as the solid fuel for heating of agricultural facilities. Therefore, this study was carried out to investigate the thermal and physicochemical characteristics of solid fuel extruded with cattle feedlot manure. Calorific values of the solid fuel extruded with cattle feedlot manure, which was dried to the moisture contents of 0.0% (w.b) and 35.0% (w.b,) were 14,906 kJ/kg and 11,797 kJ/kg, respectively. Calorific value of extruded solid fuel was linearly decreased with the increase of moisture content. The first, second, and third reaction point during thermal pyrolysis of solid fuels extruded with cattle feedlot manure was investigated as $108.1^{\circ}C$, $312.2^{\circ}C$, and $459.4^{\circ}C$, respectively. The maximum reaction point was presented at the temperature of $312.2^{\circ}C$. Weight loss of extruded cattle feedlot manure during thermal pyrolysis until $600^{\circ}C$ was reached to about 60%. Volume decrease of initial extruded cattle feedlot manure was 61% during drying for the use as solid fuel. Maximum strength of extruded cattle feedlot manure, which was dried as the moisture content of 10% (w.b.) was 41,9150 N/$m^2$. Ignition gas analysis of extruded cattle feedlot manure presented that it has small amount of $NO_x$ and $SO_x$. It was shown that dried cattle feedlot manure had main components of C and O including small amount of Mg, Si, and Ca.

Feasibility test for Solidified Fuel with Cow Manure (고체연료화 방법을 적용한 우분 처리 가능성 평가)

  • Jeong, Kwang-Hwa;Kim, Jung-Kon;Lee, Dong-Jun
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.6
    • /
    • pp.112-119
    • /
    • 2017
  • In this study, the availability of cow manure as raw material for solid fuel production was investigated. Since the water content of the cow manure was too high, it was dewatered using a laboratory hydraulic compressure ($11.3kg/cm^2$). The moisture content of the cow manure decreased from 82.01% to 73.36 wt.%. The dewatered cow manure was homogenized by the experimental apparatus and then put into the rotating cylindrical apparatus. From the consecutive processes, the cow ball-shaped pellet which size ranged from 3.0 to 25.0 mm was produced. The major factor for making palletized fuel from cow manure was the moisture content. Based on the experimental data, the moisture content of cow manure for pelletizing cow manure was identified as 65~75 wt.%. When the moisture content of the cow manure was lower than 30 wt.%, the diameter of the pellets maded from cow manure was smaller than 3 mm. On the other hand, when the water content of the cow manure was higher than 75 wt/%, the diameter of the processed pellets tended to be larger than 25 mm. The characteristics of the processed cow manure pellets was analyzed to be in accordance with the livestock solid fuel quality standard. The pyrolysis characteristic of the pellet was analyzed by raising the heating temperature of the experimental equipment from 200 to $900^{\circ}C$. The mass change between of 20 and $130^{\circ}C$ corresponds to the amount of moisture contained in the cow manure. The amount of moisture was about 15% of the total weight of cow manure samples. The cow manure pellet was thermally stable up to $280^{\circ}C$. It can be interpreted that combustion of cow manure pellet does not occur until the surface temperature reaches $280^{\circ}C$. The mass change of pellet between of 280 and $450^{\circ}C$ was considered to be due to the vaporization of volatile organic compounds (VOCs) present in the cow manure pellet. The maximum production of VOCs was showed near $330^{\circ}C$.

Effect of Flocculant Injection Ratio in NIR (Near-Infrared Ray) Drying for BIO-SRF (Solid Recovered Fuel) of Swage Sludge (하수슬러지 BIO-SRF (Solid Recovered Fuel) 생산을 위한 NIR (Near Infrared Ray) 건조시 응집제 주입비율이 미치는 영향)

  • Lee, Kang-min;Lee, Seung-Won
    • Journal of Environmental Science International
    • /
    • v.30 no.2
    • /
    • pp.135-143
    • /
    • 2021
  • This study executed evaluation of drying characteristics based on the polymer injection rate (8%, 10% and 12%) and the drying method[NIF(near-infrared ray). According to this study analyzed VS, VS/TS, and calorific value compared with 'the auxiliary fuel standard of the thermoelectric power plant and the combined heat & power plant'. The results are as follows. In the case of NIR, the VS was slightly changed at the early stage of the material preheating period and the constant drying rate period with low moisture evaporation. But VS reduction was shown higher as moisture was dried. In the case of non-digested sludge with high VS content, the VS reduction rate by drying was shown lower than that of digested sludge. As the flocculant injection rate increased, the VS loss due th drying was found to be small. Also, the higher the flocculant injection rate was the longer the drying time. Especially, in the case of the NIR drying equipment, as the moisture content of sewage sludge decreased(moisture content 20~40%), the loss of net VS also showed a tendency to increase sharply. It is shown that the high calorific value according to the drying time of the non-digested sludge was changed from 590 kcaℓ/kg to 3,005 kcaℓ/kg and from 539 kcaℓ/kg to 2,796 kcaℓ/kg.

Crown Fuel Characteristics and Allometric Equations of Pinus densiflora Stands in Youngju Region (영주지역 소나무림의 수관연료특성 및 수관연료량 추정)

  • Kim, Sungyong;Lee, Byungdoo;Seo, Yeonok;Lee, Youngjin
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.266-272
    • /
    • 2011
  • This study was conducted to analyze the characteristics of crown fuel biomass and to develop allometric equations for the estimation of crown fuel biomass by subjectively categorized the crown component in Pinus densiflora stands. A total of ten representative trees were destructively sampled in Youngju region. Crown fuel were weighed separately for each fuel category by size class. The results of this study showed that foliar moisture content was 119% while the average crown moisture content was 105.3%. The crown fuel/total fuel loading ratio was 30%, needles and twigs with less than 1 cm diameter accounted 50.3% for its fuel/crown fuel loading ratio. Adjusted multiple coefficient of determination of suggested allometric equations ranged from 0.6846 to 0.9246 for crown fuel biomass, 0.8308 for crown volume.