• 제목/요약/키워드: Fuel gas supply system

검색결과 208건 처리시간 0.024초

SOFC 스택 안전성능 평가 시스템 제작을 위한 평가항목 도출에 관한 연구 (A Study of Deduction of evaluation Items for Design of SOFC stack safety performance evaluation system)

  • 박태성;남태호;이덕권;이승국;문종삼
    • 한국가스학회지
    • /
    • 제21권6호
    • /
    • pp.81-87
    • /
    • 2017
  • SOFC(Solid Oxide Fuel Cell)는 고온 연료전지 중 하나이며, SOFC 시스템과 스택은 고온 운전 특성을 가지고 있다. 이러한 특성 때문에 시스템 설계 및 재료의 선택, 내구성 확보, 안전성능 확보에 많은 어려움을 가지고 있다. 따라서 SOFC 연료전지의 상용화와 보급을 위해서는 안전성능 평가기술과 평가시스템의 개발이 병행되어야 한다. 본 연구에서는 스택 안전성능 평가시스템의 제작을 위하여 국내 외 SOFC 관련규격 및 스택의 위험요소를 분석하였다. 분석한 자료를 바탕으로 스택 안전성능 평가 시스템의 제작을 위한 평가항목을 도출하였다. 본 연구 결과를 통해 SOFC 연료전지의 보급 활성화와 안전한 사용 환경에 기여할 수 있기를 기대한다.

층상연료분사(경유/메탄올)를 이용한 디젤엔진의 유해 배출물 저감에 관한 연구 (A Study on the Reduction of Harmful Exhaust Gas with Diesel-Methanol Stratified Injection System in a Diesel Engine)

  • 강병무;안현찬;이태원;정성식;하종률
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.43-50
    • /
    • 2002
  • In the present study, reduction of harmful exhaust gas in a diesel engine using stratified injection system of dual fuel (diesel fuel and methanol) was tried. The nozzle and fuel injection pump of conventional injection system were remodeled to inject dual fuel in order from the same injector. The quantity of each fuel was controlled by micrometers, which were mounted at rack of injection pumps. The injection ratio of dual fuel was certificated by volumetric ratio in injection quantity test. Cylinder pressure and exhaust gas were measured and analyzed under various supply condition of duel fuel. We confirmed that combustion of dual fuel was performed successful1y by using modified injection system in a D.I. diesel. Soot and NOx are simultaneously reduced by stratified injection without large deterioration of thermal efficiency, but THC and CO are relatively increased.

5kW급 고분자 연료전지 시스템의 개발과 운전 (Development and Operation of 5kW-Class Polymer Electrolyte Membrane Fuel Cell System)

  • 전영갑;백동현;전광선;김창수;신동렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 D
    • /
    • pp.1876-1878
    • /
    • 1999
  • Developed was a 5kW-class polymer electrolyte membrane fuel cell(PEMFC) system comprised of fuel cell stack, fuel processing, thermal and water management subsystems and ancillary equipments. Several large single cells have been fabricated with different gas flow field patterns and paths, and the gas flow field pattern for the stack has been determined based on the single cell performance of thin film membrane electrode assembly (MEA). The PEMFC stack was consisted of 100 cells with an electrode area of $300cm^2$, having serpentine flow pattern. Fuel processing was developed including an autothermal methanol reformer and two preferential CO oxidation reactors. The fuel processing was combined to PEMFC operation system consisted of air compressor and thermal and water management subsystems. The PEMFC stack showed performance of 5kW under the supply of $H_2$ and air, but its performance was lowered to 3.5kW under the supply of reformed gas.

  • PDF

자동차 연료 절감을 위한 연료펌프 다단 제어기 설계 (Design of Multi Step Fuel Pump Controller for Vehicle's Fuel Retrenchment)

  • 양재원;양승현;이석원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.307-308
    • /
    • 2007
  • At present, there are unnecessary electrical consumes and a lot of fuel-losses by the vaporized gas due to the rising of fuel temperature because the fuel pump of the fuel supply system rotates regularly regardless to the driving condition. In this paper, we designed the multi-step controller for controlling fuel pump to supply fuel according to RPM of each moment by measuring the real time RPM of the engine at ECU of the vehicle. Also, it can judge the existence or nonexistence of disorder by measuring the pressure of the fuel supply line, in case of abnormal state, it can supply the fuel intelligently by changing the mode to self-compensation mode.

  • PDF

수소트럭 수소저장시스템에 대한 구조안전성 및 기밀성능평가 (Evaluation of Structural Safety and Leak Test for Hydrogen Fuel Cell-Based Truck Storage Systems)

  • 김다은;염지웅;최성준;김영규;조성민
    • 한국기계가공학회지
    • /
    • 제19권11호
    • /
    • pp.1-7
    • /
    • 2020
  • Recently, hydrogen has gained considerable attention as an eco-friendly fuel, which helps in reducing carbon dioxide content. Specifically, there is a growing interest in vehicles powered by a hydrogen fuel cell, which is spotlighted as an environmental-friendly alternative. A hydrogen transport system, fuel cell system, fuel supply system, power management system, and hydrogen storage system are key parts of a hydrogen fuel cell truck. In this study, a hydrogen storage system is built and analyzed. The expansion length of the storage vessel at maximum operating pressure (87.5 MPa) was calculated with ABAQUS, and then the optimized system was designed and built. The leak and bubble tests were performed on the built storage system. The leakage of the system was measured to be under 5 cc/hr. Hence, it can be used as a research test for the safety evaluation of leading systems of hydrogen fuel-powered commercial vehicles.

마이크로 가스 터빈용 연소기의 연료 노즐의 유량 분배에 관한 수치 해석적 연구 (Numerical Study on Flow Distribution of Fuel Nozzles for a Combustor in a Micro Gas Turbine)

  • 김태훈;도규형;한용식;김명배;최병일
    • 한국연소학회지
    • /
    • 제19권4호
    • /
    • pp.8-13
    • /
    • 2014
  • Flow distribution of fuel nozzles for a combustor in a micro gas turbine is numerically investigated. The fuel supply system for the present study has 12 single nozzles with a diameter of several hundred micrometers. A uniform temperature distribution of a combustor outlet should be achieved for maximizing the lives of the turbine blades and nozzle guide vanes. For this, it is very important to uniformly supply fuel to a combustor. In order to investigate flow distributions of fuel nozzles, numerical models for fuel nozzles are made and solved by a commercial code, ANSYS FLUENT. An effect of a fuel nozzle diameter and fuel flow rates on flow distribution of fuel nozzles is numerically investigated. As a result, non-uniformity is increasing as a diameter of a single fuel nozzle increases. Finally, an appropriate diameter of a single fuel nozzle is suggested.

가스터빈-가압형 SOFC 하이브리드 시스템의 성능특성 해석 (Performance Characteristics Analysis of Gas Turbine-Pressurized SOFC Hybrid Systems)

  • 양원준;김동섭;김재환
    • 설비공학논문집
    • /
    • 제16권7호
    • /
    • pp.615-622
    • /
    • 2004
  • Recently, the hybrid system combining fuel cell and gas turbine has drawn much attention owing to its high efficiency and ultra low emission. It is now on the verge of world wide development and various system configurations have been proposed. A national project funded by Korean government has also been initiated to develop a pressurized hybrid system. This work aims at presenting design performance analysis for various possible system configurations as an initial step for the system development. Study focuses are given to major design options including the power ratio between gas turbine and fuel cell, reforming method (internal or external), reforming heat source (reforming burner, cathode hot air, fuel cell heat release) and steam supply method for reformer (anode gas recirculation, external steam generator). A wide variation in performance among different configurations has been predicted.

개조된 LPG엔진에서 Mixer와 LPi 연료공급방식의 엔진성능 및 배기특성 (Engine Performance and Emissions Characteristics in an LPG Engine Converted with Mixer and LPi System Fuel Supply Methods)

  • 최경호;김진호;조웅래;한성빈
    • 대한기계학회논문집B
    • /
    • 제28권9호
    • /
    • pp.1075-1080
    • /
    • 2004
  • In this study, performance and emissions characteristics of an liquefied petroleum gas (LPG) engine converted from a diesel engine were examined by using mixer system and liquid propane injection (LPi) system fuel supply methods. A compression ratio for the base diesel engine, 21, was modified into 8, 8.5, 9 and 9.5. The cylinder head and the piston crown were modified to roe the LPG in the engine. Ignition timing was controlled to be at minimum spark advance for best torque (MBT) each case. Engine performance and emissions characteristics are analyzed by investigating engine power, brake mean effective pressure (BMEP), brake specific fuel consumption (BSFC), volumetric efficiency, CO, THC and NOx. Experimental results showed that the LPi system generates higher power and lower emissions than the conventional mixer fuel supply method.

이중연료엔진의 연료가스공급시스템에 대한 안전무결도 기반 안전계장시스템 설계 (SIS Design for Fuel Gas Supply System of Dual Fuel Engine based on Safety Integrity Level(SIL))

  • 강낙원;박재홍;정정호;나성
    • 대한조선학회논문집
    • /
    • 제49권6호
    • /
    • pp.447-460
    • /
    • 2012
  • In this study, the shutdown system of the fuel gas supply system is designed based on the Safety Integrity Level of IEC 61508 and IEC 61511. First of all, the individual risk($10^{-4}$/year) and the risk matrix which are the risk acceptance criteria are set up for the qualitative risk assessment such as the HAZOP study. The natural gas leakage at the gas supply pipe is identified as the highest risk among the hazards identified through the HAZOP study and as a safety instrumented function the shutdown function for leakage was defined. SIL 2 and PFD($2.5{\cdot}10^{-3}$) for the shutdown function are determined by the layer of protection analysis(LOPA). The shutdown system(SIS) carrying out the shutdown function(SIF) is verified and designed according to qualitative and quantitative requirements of IEC 61508 and IEC 61511. As a result of SIL verification and SIS conceptual design, the shutdown system is composed of two gas detectors voted 1oo2, one programmable logic solver, and two shutdown valve voted 1oo2.