• 제목/요약/키워드: Fuel evaporation rate

Search Result 75, Processing Time 0.018 seconds

Research on One Dimensional Dynamic Model in Water Transportation of PEM Fuel Cell

  • Bakhtiar, Agung;You, Jin-Kwang;Park, Jong-Bum;Hong, Boo-Pyo;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.382-387
    • /
    • 2012
  • Water balance has a significant impact on the overall fuel cell system performance. Proper water management should provide an adequate membrane hydration and avoidance of water flooding in the catalyst layer and gas diffusion layer. Considering the important of advanced water management in PEM fuel cell, this study proposes a simple one dimensional water transportation model of PEM fuel cell for use in a dynamic condition. The model has been created by assumption that the output is the water liquid saturation difference. The liquid saturation change is the total difference between the additional water and the removal water on the system. The water addition is obtained from fuel cell reaction and the electro osmotic drag. The water removal is obtained from capillary transport and evaporation process. The result shows that the capillary water transport of low temperature fuel cell is high because the evaporation rate is low.

  • PDF

A Numerical Study on the Break-up of the Fuel Spray in Diesel Engine (디젤기관 연료분무의 분열 현상에 대한 수치해석적 연구)

  • Yang, H.C.;Choi, Y.K.;Ryou, H.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.8-22
    • /
    • 1995
  • Three dimensional numerical study of non-evaporating and evaporating spray characteristics was performed in a quiescent and motoring condition of direct injection diesel engine. The calculation parameter was breakup model. The breakup models used were Reitz & Diwakar model and TAB model. The modified k-${\varepsilon}$ turbulence model considering the compressibility effect due to the compression and expansion of piston was used. The calculation results of the spray tip penetration and tip velocity using the TAB model showed similar trends comparing with the experimental data. Although the evaporation rate was not nearly affected with the breakup model at the higher injection pressure, in the low injection case, the evaporation rate result using the TAB model became higher than that of R&D model. The evaporation rate was increased with the injection pressure due to the vigorous interaction with the gas field.

  • PDF

Combustion and Exhaust Emission Characteristics by the Change of Intake Air Temperature in a Single Cylinder Diesel Engine (단기통 디젤엔진에서 흡기온도변화에 따른 연소 및 배기특성)

  • Shin, Dalho;Park, Suhan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.336-343
    • /
    • 2017
  • Intake air conditions, such as air temperature, pressure, and humidity, are very important parameters that influence engine performance including combustion and emissions characteristics. The purpose of this study is to investigate the effects of intake air temperature on combustion and exhaust emissions characteristics in a single cylinder diesel engine. In this experiment, an air cooler and a heater were installed on the intake air line and a gas flow controller was installed to maintain the flow rate. It was found that intake air temperature induced the evaporation characteristics of the fuel, and it affects the maximum in-cylinder pressure, IMEP(indicated mean effective pressure), and fuel consumption. As the temperature of intake air decreases, the fuel evaporation characteristics deteriorate even as the fuel temperature has reached the auto-ignition temperature, so that ignition delay is prolonged and the maximum pressure of cylinder is also reduced. Based on the increase in intake air temperature, nitrogen oxides(NOx) increased. In addition, the carbon monoxide(CO) and unburned hydrocarbons(UHC) increased due to incomplete fuel combustion at low intake air temperatures.

Effect of exhaust gas dilution rate on formation of flameless combustion using liquid fuel (액체연료 무화염형성에 미치는 배기가스희석율의 영향)

  • Cha, Chun Loon;Lee, Ho Yeon;Hwang, Sang Soon
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.301-303
    • /
    • 2014
  • Flameless combustion, well known as MILD (Moderate Intensity Low oxygen Dilution) combustion or CDC(Colorless Distributed Combustion), is considered as one of the promising technology for achieving low NOx and CO emissions with improving thermal efficiency of combustion system. In this paper, the effects of exhaust gas dilution rate on formation of flameless combustion of liquid fuel were analyzed using three-dimensional numerical simulations for application of gas turbine combustor with high power density. Results show that the local high temperature region was decreased and flame temperature was spatially uniformly distributed due to higher dilution rate of burnt gas as similar pattern of gas phase flameless combustion. But the evaporation and mixing process of liquid fuel are found to be another important factors for formation of flameless combustion.

  • PDF

An Experimental Study on the Combustion Characteristics of CWM Single Droplet (CWM 단일액적의 연소특성에 관한 연구)

  • Park, Chong-Sang;Lee, Tae-Won;HA, Jong-Yul;Chung, Sung-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.402-410
    • /
    • 2000
  • As the combustion process of CWM consists of the water evaporation, the release and combustion of volatile matter, and the combustion of char for every particle, it is more complex than that of existent liquid fuel. Though the many studies on CWM combustion have been carried out by the single droplet using hanging methods or the multiple droplet using atomization methods, any report don't presents definite solution about the effects by the initial water evaporation and combustion of volatile. When CWM is suddenly exposed in the high temperature surroundings, the internal water evaporates and then each droplet builds up pores. Besides, porosity rate changes along the temperature of surroundings, the composition ratio of CWM, and the initial diameter of droplet. In result, because it affects the whole combustion rate, the combustion of CWM has complex mechanism as compared with the combustion of liquid or gas fuel. Therefore, concentrating on porous structure of CWM, this study has proceeded to acquire the basic data on the CWM injection combustion and closely examines the effects of the first stage combustion on the whole combustion by measuring the diameter variations, pore rate, mass fraction burned, and the internal temperature changes of CWM droplet. The results demonstrate that $60{\sim}70%$ of initial mass is reduced during water evaporation and volatile combustion period, and swelling rate, mass faction burned, and density variation are greatly concerned with atomization of CWM etc.

An Experimental Investigation on Spray Behavior of Biodiesel and DME on Blended Ratio in High Temperature and Pressure Ambient Conditions (고온 고압 분위기 조건에서 바이오 디젤과 DME의 혼합비에 따른 분무특성에 관한 연구)

  • Bang, Seung-Hwan;Chon, Mun-Soo;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 2010
  • The objective of this work is to analyze the macroscopic behavior of spray and injection characteristics on the DME blended biodiesel at different mixing ratios by using spray visualization and injection rate measurement system. The spray images were analyzed to a spray tip penetration, a spray cone angle and a spray area distribution at various mixing ratio of DME by weight. The influence of different injection pressure and ambient pressure on the fuel spray characteristics are investigated for the various injection parameters. In order to analyze the injection characteristics of test fuels, the fuel injection rate is measured at various blending ratio. The variation of viscosity of the blended fuel by the mixing of DME fuel shows the improved effect of spray developments. Also, it was found that the injection quantities of high blended ratio were larger than that of lower blended fuel. Also, higher blending fuel showed a faster evaporation than that of mixing ratio of test fuel because kinetic viscosity was changed by blending ratio.

A Study on Performance of Engine Combustion and Emission Using Gasoline-Methanol Fuel in Sl Engine (스파크 점화기관의 가솔린-메탄올 연료를 사용한 기관연소 및 배기성능에 관한 연구)

  • 윤창식;김치원
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.3
    • /
    • pp.3-13
    • /
    • 1992
  • In recent years, the study about the high efficiency and low fuel consumption of the internal conbustion engine has been mainly proceeding. To achieve these goals, the improvement of combustion process in Sl engine and the use of substitute energy are suggested. When the methanol blend fuel Is used, the combustion rate of the initial ignition is diminishing by high latent evaporation of methanol. But it attracts the attention because of the high octane number, and lean mixture peculiarity. Considering these facts, the gasoline-methanol blend fuel In engine operation has been used to compare and analyze the pressure development, rate of heat release, mass burned fraction, and combustion process. The results of experiment show the power increase, lean combustion and low harmful component of emission.

  • PDF

An Analytical Investigation on Fluid Dynamics of Filler Neck Check Valve for On-board Refueling Vapor Recovery (주유중 증발가스제어 필러넥 체크밸브의 유동해석)

  • 김성훈;이재천
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.105-111
    • /
    • 2003
  • ORVR filler neck check valve, which is one of the essential components of the vapor fuel control system, should diminish the evaporation by maintaining laminar fluid flow on refueling process. This study presents numerical. results of pressure and velocity distributions of the fluid flow in a ORVR filler neck check valve on refueling process. CFD-ACE+ has been employed for numerical analysis based on the information of experimental results of valve position as a function of inlet flow rate. No abrupt pressure change, which may causes vaporization of fuel, has been confirmed to take place on the concave surface of the valve spool. However, it is clear that some possibility exist at the mid-position of surface of valve spool and downstream according to the opening of valve.

An experimental study of the deposition of inorganic salts from seeded combustion gases by optical methods (광학적 방법에 의한 연소 개스에 포함된 알칼리 금속 염의 부착에 관한 실험적 연구)

  • 김상수;우성구
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.7 no.2
    • /
    • pp.55-63
    • /
    • 1985
  • This study is focused on deposition process leading to inefficiency and hot corrosion in fossil fuel-fired furnaces and engines. An improved understanding of the coupled thermodynamics, kinetics, and transport processes governing the deposition rate of inorganic oxides and salts from hot gases containing these compounds can suggest more efficient test strategies and control measures. Accordingly, an optical re-evaporation method for accurately measuring the growth rate of deposits under laboratory burner conditions has been developed. To demonstrate the technique and provide data suitable for theoretical model development, a deliberately simple chemical system and target geometry are used. Potassium sulfate(K$_{2}$SO$_{4}$)is introduced into a premixed propane-air flat flame at atmospheric pressure. The growth rate of $K_{2}$SO$_{4}$ on an electrically heated Pt ribbon is measured by re-evaporation technique.

  • PDF

Extinguishment of Liquid Fuel Fire by Water Mist Containing Additives

  • Park, Jae-Man;Won, Jung-Il;Shin, Chang-Sub
    • International Journal of Safety
    • /
    • v.4 no.2
    • /
    • pp.24-29
    • /
    • 2005
  • An experimental study was presented for extinguishing characteristics of liquid fuel fire by water mist($Dv_{0.99}{\leq}200{\mu}m$) containing potassium acetate and sodium acetate trihydrate. To evaluate the extinguishing performance of water mist containing additives, the evaporation characteristics of a water droplet on a heated surface was examined. The evaporation process was recorded by a charge-coupled-device camera. Also, small-scale extinguishing tests were conducted for n-heptane pool fire in ventilated space. During the experiments, flame temperatures were measured, and concentrations of oxygen and carbon monoxide were analyzed by a combustion gas analyzer. The average evaporation rate of water droplet containing additives was lower than that of pure water at a given surface temperature and decreased with the concentration increase due to the precipitation of salt in the liquid-film and change of surface tension. In case of using additives, the fire extinguishing times was shorter than that of pure water at a given discharge pressure and it was because the momentum of a water droplet containing additives was increased. And also dissociated metal atoms, potassium or sodium, were reacted as a scavenger of the major radical species OH, H which were generated for combustion process. Moreover, at a high pressure of 4 MPa, the fire was extinguished through blowing effect as well as primary extinguishing mechanisms.