• 제목/요약/키워드: Fuel direct injection

검색결과 416건 처리시간 0.024초

천연가스-디젤 혼소 엔진의 50% 부하 조건에서 제동효율 및 연소안정성 개선을 위한 디젤 분무 특성 평가 (Investigation on Diesel Injection Characteristics of Natural Gas-Diesel Dual Fuel Engine for Stable Combustion and Efficiency Improvement Under 50% Load Condition)

  • 오세철;오준호;장형준;이정우;이석환;이선엽;김창기
    • 한국가스학회지
    • /
    • 제26권3호
    • /
    • pp.45-53
    • /
    • 2022
  • 디젤엔진의 배출물 개선을 위해 탄소수가 낮은 천연가스를 혼합하여 사용하는 천연가스-디젤 혼소 연소가 각광받고 있다. 특히 자발화 특성에 차이가 있는 디젤과 천연가스의 특성을 이용한 반응성 제어 압축착화(reactivity controlled compression ignition, RCCI) 연소 전략을 통해 기존 디젤엔진의 효율과 배출가스를 동시에 개선시키는 연구가 활발하게 진행되어 왔다. 상사점보다 앞당겨진 디젤 직접 분사시기 적용을 통해 실린더 전체 영역의 균일 혼합기를 형성하여 전체적으로 희박한 자발화 기반 연소를 달성함으로써 질소산화물 (NOx) 및 입자상물질 (PM) 저감과 제동열효율 개선을 동시에 달성할 수 있다. 하지만 매우 희박한 저부하 영역에서 불완전 연소량이 증가하는 단점이 존재하며, 안정적인 연소 구현을 위해 디젤 분사시기가 민감하게 제어되어야 하는 어려움도 존재한다. 본 연구에서는 앞서 언급된 저부하 영역에서의 천연가스-디젤 혼소 엔진의 효율 및 배기 개선을 확인하고, 동시에 발전용 엔진 구동 영역에서 디젤 분사시기에 따른 연소안정성을 평가하였다. 실험에는 6 L급 상용디젤 엔진이 사용되었으며, 1,800 rpm, 50% 부하 영역 (~50 kW)에서 실험이 진행되었다. 제동효율 및 연소안정성을 개선하기 위한 전략으로 분무 패턴이 다른 2개의 인젝터를 적용하였으며, 천연가스/디젤 비율과 디젤 분사시기를 바꿔가면서 실험이 진행되었다. 실험 결과, 협각 분사가 추가된 수정 인젝터에서 제동 열효율이 증가하는 것을 확인하였다. 또한 연소안정성 및 출력, 그리고 강화된 배기 규제를 고려하였을 때 수정 인젝터의 분무 패턴이 예혼합연소 형성에 적합하였고 이를 통해 질소산화물 배출량을 Tier-V 기준치인 0.4 g/kWh 이하로 저감함으로써 RCCI 연소 가능 영역을 확장할 수 있음을 실험적으로 확인하였다.

실린더 압력을 이용한 디젤엔진의 실시간 IMEP 추정 (Cylinder Pressure based Real-Time IMEP Estimation of Diesel Engines)

  • 김도화;오병걸;오승석;이강윤;선우명호
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.118-125
    • /
    • 2009
  • Calculation of indicated mean effective pressure(IMEP) requires high cylinder pressure sampling rate and heavy computational load. Because of that, it is difficult to implement in a conventional electronic control unit. In this paper, a cylinder pressure based real-time IMEP estimation method is proposed for controller implementation. Crank angle at 10-bar difference pressure($CA_{DP10}$) and cylinder pressure difference between $60^{\circ}$ ATDC and $60^{\circ}$ BTDC($DP_{deg}$) are used for IMEP estimation. These pressure variables can represent effectively start of combustion(SOC) and fuel injection quantity respectively. The proposed IMEP estimation method is validated by transient engine operation using a common-rail direct injection diesel engine.

Fast and Brand-Specific Calibration of Fuel-efficient Powertrains

  • Dobes, Thomas;Leithgoeb, Rainer;Bachler, Johann;Schoeggi, Peter
    • 오토저널
    • /
    • 제25권4호
    • /
    • pp.74-82
    • /
    • 2003
  • Future emission legislation requirements especially the need for CO$_2$ reduction lead to more complex powertrain concepts with an increasing number of independent parameters to be calibrated. For gasoline engines concepts with variable valve timing, direct injection or variable charge motion are in development or already on production. Diesel engines with common rail systems offer a wide range of new injection strategies, the application of new exhaust aftertreatment systems leads to additional complexity. Furthermore a clear trend to highly sophisticated transmission concepts requires a perfect interaction of all powertrain components. While the higher complexity requires increasing test and development effort, the development duration is reduced significantly. Consequently, the potential of such systems cannot be fully utilised by traditional development and calibration approaches within the given timeframe. By introduction of intelligent methodologies f3r the calibration of modem powertrains the development becomes more efficient, faster and better in quality. However, even with standardised and automated calibration methods a differentiated brand-specific powertrain character has to be maintained comparable to a "handmade" calibration performed by highly experienced experts.

  • PDF

가솔린 직접분사식 고압선회 분사기의 분무 영역별 분무 특성 고찰 (Spray Characteristics for Specified Regions of High Pressure Swirl Injcetor in Gasoline Direct Injection Engine)

  • 송범근;김원태;강신재
    • 대한기계학회논문집B
    • /
    • 제27권1호
    • /
    • pp.9-16
    • /
    • 2003
  • According as the industry was developed, the pollution of the environment and atmosphere rose up to the surface. So, the focus is now concentrated on the engines of affinity for nature. And the investigators make more effort to the improvement in the performance of engines, depending to the prices of oil and the anxiety about the exhaustion of the fossil fuel go up. So the GDI engines head up for these necessities. In this experimental study, the spray flow characteristics for a commercial injector equipped in the present GDI engine were investigated, which had a strong influence on the engine performance and emissions. The experiment was performed at the injection pressures of 1, 3, 5 and 7MPa under the atmospheric condition. A PDPA system was used to specify the flow characteristics of the spray. Also, the global spray behavior classified into three regions as leading, main spray and vortex cloud region, was analyzed by using a visualization system. And the regions were compared with each other.

수직분사제트에서 액적크기특성에 대한 실험적 연구 (An Experimental Study on Droplet Size Characteristics of Liquid Jets in Subsonic Crossflow)

  • 김민기;송진관;김진기;윤영빈
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제27회 추계학술대회논문집
    • /
    • pp.59-63
    • /
    • 2006
  • 횡단류 아음속유동장에서 연료의 수직 분사시 나타나는 액적영역의 액적들을 직접사진촬영으로 측정하고 PLLIF 실험을 통하여 얻은 강도 값으로 SMD분포를 측정하였다. 본 연구의 목적은 정상유동에서의 액적들의 크기 및 분포를 관찰하고, 캐비테이션 및 수력튀김 현상에 대한 액적들의 차이를 확인하는 것이다. 실험을 통하여 정상유동의 액적들은 분사차압, 공기의 유속, 침투거리, 인젝터 지름에 대한 하류방향 거리비(x/d)에 의하여 결정되며, 캐비테이션에 의한 난류강도, 유효지름에 따라 차이가 있음을 확인하였다.

  • PDF

CNG 직접분사식 연소기에서의 열량해석(1) :균질급기 (Analysis of Heat Quantity in CNG Direct Injection Bomb(1) : Homogeneous Charge)

  • 최승환;전충환;장영준
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.17-23
    • /
    • 2004
  • A cylindrical constant volume combustion bomb is used to investigate the combustion characteristics and to analyze the heat quantity of homogeneous charge methane-air mixture under various initial pressures, excess air ratios and ignition times. As the overall pressure increase, the values of maximum combustion pressure, maximum heat release rate and cumulative heat release have been increased. But it is not very meaningful to compare with some values such as maximum combustion pressure, maximum heat release rate and cumulative heat release for different overall pressure due to the different heat energy of supplied fuel. So the each value is needed to be compared with normalized value, which is divided by the entered fuel energy. To analyze the heat quantity, some definitions including the CHR ratio, the UHC ratio and the HL ratio are needed and are calculated. As the overall pressure increase, the CHR ratios and the UHC ratios have been decreased, while the HL ratios have been increased. The CHR ratio of 300 ms has the higher value than that of 10000ms, and the HL ratios of 300 ms have a lower value.

후처리 시스템을 장착한 디젤엔진의 EGR 밸브 작동에 따른 성능 분석 (Analysis of Performance Characteristics on Diesel Engine with Aftertreatment and EGR System)

  • 박철웅;최영;임기훈
    • 한국자동차공학회논문집
    • /
    • 제18권5호
    • /
    • pp.124-129
    • /
    • 2010
  • The direct injection (DI) diesel engine has become a prime candidate for future transportation needs because of its high thermal efficiency. However, nitrogen oxides (NOx) increase in the local high temperature regions and particulate matter (PM) increases in the diffusion flame region within diesel combustion. Therefore, the demand for developing hybrid system consist of exhaust gas recirculation (EGR) and aftertreatment system as well as diesel particulate filter (DPF) or lean NOx trap (LNT) should be applied. The variation of EGR rate due to the malfunction of EGR valve can affect not only the combustion stability of engine but also the performance of aftertreatment system. In this research, 2.0 liter 4-cylinder turbocharged diesel engine was used to investigate the combustion and emission characteristics for various operating conditions with EGR. While the fuel consumption was increased with increase of EGR rate, NOx emission was improved by maximum 90% at low speed, low load operating condition. To achieve combustion stability and reliability of aftertrearment system with minimum penalty in fuel consumption and emissions, the fault diagnosis of EGR malfunction must be employed.

디젤엔진에 있어서 흡기 중에 SO2혼입이 연소 및 배기배출물 특성에 미치는 영향 (Effects of SO2 Mixture in Inlet Air on Combustion and Exhaust Emission Characteristic in diesel engine)

  • 유동훈
    • 동력기계공학회지
    • /
    • 제19권2호
    • /
    • pp.64-69
    • /
    • 2015
  • Marine diesel engines with high thermal efficiency and fuel diversity used for propulsive power have been taking charge of important position on marine transport. However, marine environment has recently focused on emissions such as nitrogen oxide and sulfur oxide which is generated from combustion of low grade fuels. EGR(Exhaust gas recirculation) system is one of effective methods to reduce the nitrogen oxide emission from marine diesel engines. In general, it is considered that recirculating gas influences fuel combustion and emissions in diesel engines. However, along with positive effects of EGR, the EGR system using fuels of including high sulfur concentration should be considered about re-combustion and activation of sulfur dioxide in recirculating gas. Therefore, in experimental study, an author investigates effects of sulfur dioxide mixture concentration in intake air on combustion and exhaust emission characteristics in a direct injection diesel engine. In results, change of sulfur dioxide concentrations in intake air had negligible impact on combustion chamber pressure, rate of heat release and emissions compared with effects of oxygen decreasing and carbon dioxide increasing of EGR.

EMISSION ANALYSIS OF A MEDIUM CAPACITY DIESEL ENGINE USING MAHUA OIL BIODIESEL

  • Sharma, Ajay Kumar;Das, L.M.;Naik, S.N.;Chauhan, Bhupendra Singh;Cho, Haeng Muk
    • 에너지공학
    • /
    • 제22권2호
    • /
    • pp.136-140
    • /
    • 2013
  • The stringent emission norms cannot be met through engine design and exhaust after treatment alone. Use of oxygenated fuel like biodiesel as a alternative to diesel may be the best way to reduce emissions today. In this study, Diesel fuel and pure biodiesel (mahua oil) were tested on a single cylinder naturally-aspirated direct-injection diesel engine. The study aims to investigate the effects of the mahua oil biodiesel on existing diesel engine emissions. The effect of test fuels on engine emissions like CO, HC, $CO_2$, NOx and smoke emissions was investigated with respect to the load on engine. Smoke opacity of Diesel engine was lower in case of biodiesel of mahua oil as compare to mineral diesel. NOx emissions was little higher during the whole range of loading, which is a typical characteristic of biodiesel. However the increments are within in the narrow range. $CO_2$ emissions was bit higher which is the indication of better combustion due to presence of rich oxygen in the mixture, it results in the low values of CO and HC during the whole range of experiments. Thus considering environmental norms most of the engine emissions, it can be concluded and biodiesel derived from mahua oil could be used in a conventional diesel engine without any modification.

고온고압 조건에서 Two-Photon LIF를 이용한 CO 측정에 관한 연구 (CO Two-photon Laser Induced Fluorescence Measurements in High Temperature and Pressure Conditions)

  • 오승묵;김득상
    • 한국연소학회지
    • /
    • 제12권4호
    • /
    • pp.1-7
    • /
    • 2007
  • Carbon monoxide (CO) is not only an important intermediate species in chemical reaction mechanisms of hydrocarbon fuel combustion, but also a crucial pollutant species emitted from automotive engines. To better understand the physical processes impacting CO emissions, the development of laser-based measurement techniques that can visualize in-cylinder CO distributions is desirable. Among these techniques, Laser-Induced Fluorescence (LIF) is a sensitive and species-selective detection technique capable of good spatial resolution. However, some technical matters such as deep UV excitation, severe pressure dependency of the LIF signal, and potential interference from other species have been major challenges for CO LIF application. This study is focused on investigating the feasibility of CO two-photon LIF in a direct-injection diesel engine operating at typical pressure and temperature conditions with commercial grade diesel fuel. Spectroscopic analysis shows that the CO fluorescence signal can be separated from $C_2$ Swan band or broadband fluorescence from PAHs when the signal is collected near 483 nm. The signal-to-noise ratio of CO LIF deteriorate rapidly as pressure is increased, following $P^{-1.49}$ which matches the theoretical signal pressure dependency.

  • PDF