• Title/Summary/Keyword: Fuel cycle

Search Result 1,836, Processing Time 0.031 seconds

Mechanical Integrity Evaluation on the Degraded Cladding Tube of Spent Nuclear Fuel Under Axial and Bending Loads During Transportation

  • Lee, Seong-Ki;Lee, Dong-Hyo;Park, Joon-Kyoo;Kim, Jae-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.491-501
    • /
    • 2021
  • This paper aims to evaluate the mechanical integrity for Spent Nuclear Fuel (SNF) cladding under lateral loads during transportation. The evaluation process requires a conservative consideration of the degradation conditions of SNF cladding, especially the hydride effect, which reduces the ductility of the cladding. The dynamic forces occurring during the drop event are pinch force, axial force and bending moment. Among those forces, axial force and bending moment can induce transverse tearing of cladding. Our assessment of 14 × 14 PWR SNF was performed using finite element analysis considering SNF characteristics. We also considered the probabilistic procedures with a Monte Carlo method and a reliability evaluation. The evaluation results revealed that there was no probability of damage under normal conditions, and that under accident conditions the probability was small for transverse failure mode.

Effects of Pilot Injection Quantity on the Combustion and Emissions Characteristics in a Diesel Engine using Biodiesel-CNG Dual Fuel (바이오디젤-CNG 혼소엔진에서 파일럿 분사량이 연소 및 배기 특성에 미치는 영향)

  • Ryu, Kyunghyun
    • Journal of ILASS-Korea
    • /
    • v.21 no.2
    • /
    • pp.95-103
    • /
    • 2016
  • The effect of pilot injection quantity on the combustion and emissions characteristics of a compression ignition engine with a biodiesel-compressed natural gas (CNG) dual fuel combustion (DFC) system is studied in this work. Biodiesel is used as a pilot injection fuel to ignite the main fuel, CNG of DFC. The pilot injection quantity is controlled to investigate the characteristics of combustion and exhaust emissions in a single cylinder diesel engine. The injection pressure and injection timing of pilot fuel are maintained at approximately 120 MPa and BTDC 17 crank angle, respectively. Results show that the indicated mean effective pressure (IMEP) of biodiesel-CNG DFC mode is similar to that of diesel-CNG DFC mode at all load conditions. Combustion stability of biodiesel-CNG DFC mode decreased with increase of engine load, but no notable trend of cycle-to-cycle variations with increase of pilot injection quantity is discovered. The combustion of biodiesel-CNG begins at a retarded crank angle compared to that of diesel-CNG at low load, but it is advanced at high loads. Smoke and NOx of biodiesel-CNG are simultaneously increased with the increase of pilot fuel quantity. Compared to the diesel-CNG DFC, however, smoke and NOx emissions are slightly reduced over all operating conditions. Biodiesel-CNG DFC yields higher $CO_2$ emissions compared to diesel-CNG DFC over all engine conditions. CO and HC emissions for biodiesel-CNG DFC is decreased with the increase of pilot injection quantity.

Corrosion Evaluation for Advanced Fuel Cycle Facilities (선진 핵연료주기 시설(AFC)의 부식건전성 조사, 분석)

  • Hwang, Seong Sik
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.213-217
    • /
    • 2012
  • The amount of spent fuel from nuclear power plants has been increasing. An effective management plan of the spent fuel becomes a critical issue, because the storage capacity of each plant will reach its storage limit in a few years. The volume of high toxic spent fuel can be reduced through a fuel processing. Advanced Fuel Cycle (AFC) system is considered to be one of the options to reduce the toxicity and volume of the spent fuel. It is necessary to set up a test facility to demonstrate the feasibility of the process at the engineering scale. The objective of the work is a development of the safety evaluation technology for the AFC system. The evaluation technology of the AFC structural integrity and processes were surveyed and reviewed. Key evaluation parameters for the main processes such as electrolytic reduction, electrorefining, and electrowinning were obtained. The survey results may be used for the establishment of the AFC regulatory licensing procedure. The establishment of the licensing criteria minimizes the trials and errors of the AFC facility design. Issues taken from the survey on the regulatory procedure and design safety features for the AFC facility provide a chance to resolve potential issues in advance.

Cycle Resolved NO Emissions and Its Relation with Combustion Chamber Pressure in an S.I. Engine with Fast Response NO Analyzer

  • Sung, Jung-Min;Kim, Hyun-Woo;Lee, Kyung-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1563-1571
    • /
    • 2003
  • A fast response NO analyzer was applied to investigate the relation between cycle-by-cycle NO emissions and combustion chamber pressure. NO emissions were sampled at an isolated exhaust manifold of 4-stroke spark ignition engine to avoid the interference of exhaust gas from other cylinders. The linear correlation analysis was performed with collected data of NO emissions and combustion chamber pressure with respect to the various air-fuel mixture ratios and engine loads. The sampled data sets were obtained during 200 cycles at each operating condition. The results showed that there was a typical pattern in NO emissions from an exhaust port through a cycle. It was possible to set a block of crank angle in which the linear correlation coefficient between NO emissions and combustion chamber pressure was high. As the engine load increased, NO emissions were more dependent on combustion chamber pressure after TDC. It was also analyzed that the correlation between two parameters with respect to air-fuel mixture ratio tended to increase as mixture went leaner. Furthermore, this correlation coefficient for the mixture near the lean limit seemed to be kept high even though combustion was unstable.

Development and performance analysis of a Miller cycle in a modified using diesel engine

  • Choi, Gyeung-Ho;Poompipatpong, Chedthawut;Koetniyom, Saiprasit;Chung, Yon-Jong;Chang, Yong-Hoon;Han, Sung-Bin
    • Journal of Energy Engineering
    • /
    • v.17 no.4
    • /
    • pp.198-203
    • /
    • 2008
  • The objective of the research was to study the effects of Miller cycle in a modified using diesel engine. The engine was dedicated to natural gas usage by modifying pistons, fuel system and ignition systems. The engine was installed on a dynamometer and attached with various sensors and controllers. Intake valve timing, engine speed, load, injection timing and ignition timing are main parameters. The results of engine performances and emissions are present in form of graphs. Miller Cycle without supercharging can increase brake thermal efficiency and reduce brake specific fuel consumption. The injection timing must be synchronous with valve timing, speed and load to control the performances, emissions and knock margin. Throughout these tested speeds, original camshaft is recommended to obtain high volumetric efficiency. Retard ignition timing can reduce $NO_x$ emissions while maintaining high efficiency.

Development of the urban driving cycle (한국형 시가지 주행 mode의 개발연구)

  • Kwon, Chul-Hong;Park, Sun
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.57-68
    • /
    • 1987
  • The driving pattern was studied in Seoul along nineteen representative routes using a test car equipped with all the instruments required for recording traffic flow and measuring fuel consumption. Speed histories, gear shift points, instantaneous fuel consumption rates, etc. were recorded and the data were anlyzed to determine the traffic characteristics for Seoul. The Seoul-14 Mode has been developed to simulated actual driving conditions in Seoul with respect to fuel consumption. The average speed of the Seoul-14 Mode is 30.1 Km/h and the Mode length is 11.94 Km.

  • PDF

Fretting Wear Characteristics of Nuclear Fuel Rod Material (핵연료봉재의 프레팅 마멸 특성)

  • 김태형;조광희;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04b
    • /
    • pp.25-29
    • /
    • 1996
  • The fretting wear characteristics for Zircaloy-4 tube used as fuel rod in the nuclear power plant have been investigated. The fretting wear tester was designed and manufactured for this experiment. This study was focused on main factors of fretting wear, cycle, slip amplitude and normal load. The worn surfaces were observed by SEM.

  • PDF

A Status of Technology and Policy of Nuclear Spent Fuel Treatment in Advanced Nuclear Program Countries and Relevant Research Works in Korea (선진 원자력발전국의 사용후핵연료 처리기술 및 정책현황과 우리나라의 관련연구 현황)

  • You, Gil-Sung;Choung, Won-Myung;Ku, Jeong-Hoe;Cho, Il-Je;Kook, Dong-Hak;Kwon, Kie-Chan;Lee, Won-Kyung;Lee, Eun-Pyo;Hong, Dong-Hee;Yoon, Ji-Sup;Park, Seong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.4
    • /
    • pp.339-350
    • /
    • 2007
  • Status on the spent nuclear fuel management policy and R&D plan of the major countries is surveyed. Also the prospect of the future R&D plan is suggested. Recently so-called fuel cycle nations, which have the reprocess policy of the spent fuel, announced new spent fuel management policy based on the advanced fuel cycle technology. The policy is focused to transmute highly radioactive material and material having a very long half-life, and to recycle the Pu and U contained in the spent fuel. In this way the radio-foxily of the spent fuel as well as the amount of the high level waste to be eventually disposed can greatly be reduced. Most of countries selected the wet process as a primary option for the treatment of the spent fuel since the advanced wet process, which is based on the existing PUREX process, looks more feasible as compared with the dry process. The wet process, however, is much more sensitive in terms of proliferation-resistance compared with the dry process. The pure Pu can easily be obtained by simply modifying the process. On the other hand the pure Pu can not be extracted in the dry process based on the high temperature molten salt process such as a pyroprocess. Even though the pyroprocess technology is very premature, it has a great merit. Thus it is necessary for Korea to have a long term strategy for pursuing a spent fuel treatment technology with a proliferation resistance and a great merit for the GEN-IV fuel cycles. Pyroprocess is one of the best candidates to satisfy these purposes.

  • PDF

Characteristics of $LaCrO_3$-Dispersed Cr Alloy for Metallic Interconnector of Solid Oxide Fuel Cell (고체 산화물 연료전지 금속 연결재용 $LaCrO_3$가 분산된 Cr 합금의 특성 연구)

  • Jeon, Kwang-Sun;Song, Rak-Hyun;Shin, Dong-Ryul
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.8
    • /
    • pp.570-576
    • /
    • 1999
  • $LaCrO_3$-dispersed Cr alloys for metallic interconnector of solid oxide fuel cell have been studied as function of $LaCrO_3$ content in the range of 5 to 25 vol.% in order to examine the electric conductivity, the oxidation property and the thermal expansion behavior of these alloys. The $LaCrO_3$-dispersed Cr alloys showed high electrical conductivities of $3~5\times10^4$ S/cm at room temperature, and as the $LaCrO_3$content increased the conductivity decreased slightly. During the cyclic oxidation test at $1100^{\circ}C$, the weight change of the Cr alloys decreased with increasing number of oxidation cycle except first cycle, which is attributed to the vaporization of the oxide scale. More addition of the $LaCrO_3$ content reduced also the weight change of the Cr alloys. These mean that the oxide scale formed at the surface of the Cr alloy becomes stable with increasing number of oxidation cycle and$LaCrO_3$ content. The measured thermal expansion of the Cr alloy was well fitted to that of 8 mol% $Y_2O_3$-stabilized $ZrO_2$ electrolyte. These results demonstrate that $LaCrO_3$-dispersed Cr alloy is a useful material for metallic interconnector of solid oxide fuel cell.

  • PDF

Startup Analysis of Staged Combustion Cycle Engine Powerpack (다단연소사이클 엔진 파워팩 시동해석)

  • Lee, Suji;Moon, Insang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.3
    • /
    • pp.1-8
    • /
    • 2016
  • It was examined that start-up characteristics of a staged combustion cycle engine powerpack. Among various parameters, valve opening time was considered as a main factor affecting the start-up characteristics. Using monte-carlo method, characteristics variation was analyzed when the valve opening time deviates from the nominal value. As a result, the main fuel valve opening time and the start turbine ending time were significant associated with the startup characteristics. When separating main fuel valve opening time and start turbine stop time, main fuel valve opening time was an important factor. For stable operation, the main fuel valve opening time must be set one second before after driving the start turbine. Likewise, it was confirmed that the startup analysis can suggest an appropriate startup sequence for a stable startup.