• Title/Summary/Keyword: Fuel consumption rate

Search Result 389, Processing Time 0.029 seconds

A Study on Effect of Environmental Characteristics by Intake Mixture Temperature in Scrubber EGR System Diesel Engines

  • Bae, Myung-Whan;Ryu, Chang-Sung
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.100-111
    • /
    • 2002
  • The effects of intake mixture temperature on performance and exhaust emissions under four kinds of engine loads were experimentally investigated by using a four-cycle, four-cylinder, swirl chamber type, water-cooled diesel engine with scrubber EGR system operating at three kinds of engine speeds. The purpose of this study is to develop the scrubber exhaust gas recirculation(EGR) control system for reducing $NO_x$ and soot emissions simultaneously in diesel engines. The EGR system is used to reduce $NO_x$ emissions. And a novel diesel soot-removal device of cylinder-type scrubber with five water injection nozzles is specially designed and manufactured to reduce soot contents in the recirculated exhaust gas to the intake system of the engine. The influences of cooled EGR and water injection, however, would be included within those of scrubber EGR system. In order to survey the effect of intake mixture temperature on performance and exhaust emissions, the intake mixtures of fresh air and recirculated exhaust gas are heated by a heating device with five heating coils made of a steel drum. It is found that the specific fuel consumption rate is considerably elevated by the increase of intake mixture temperature, and that $NO_x$ emissions are markedly decreased as EGR rates are increased and intake mixture temperature is dropped, while soot emissions are increased with increasing EGR rates and intake mixture temperature. Thus one can conclude that the performance and exhaust emissions are considerably influenced by the cooled EGR.

  • PDF

Allowable Amount of Bed Inventory in a 300 MW Class Circulating Fluidized Bed Boiler (300 MW 급 유동층보일러에서 적정 층 물질량 산정)

  • Kim, Woo-Yong;Yoo, Ho-seon
    • Plant Journal
    • /
    • v.14 no.2
    • /
    • pp.33-38
    • /
    • 2018
  • The CFB boilers technology is facing a number of challenges. Among them, boiler tube erosion, sintering by bed inventory overheating and high self consumed service power are major ones. This study was conducted to obtain allowable bed inventory with the Yeosu Power Plant, a 300 MW class CFB boiler. For the test, bed pressure was reduced from design pressure of 4.5 KPa to 2.5 KPa by reducing bed inventory, at fixed turbine output, coal consumption rate and air flow. Consequently, reducing the lower bed inventory is effective to decrease bed temperature but excessive reducing might increase bed temperature due to lack of circulating fluidized materials. Also, in case of the Yeosu Plant boiler using subbituminous coal as its primary fuel, its bed temperature change is highly affected by not only the amount of bed inventory, but also the boiler capacity and coal contents.

  • PDF

Development on the Methodology of CDM Projects in the SF6 Recovery and Recycling of Electrical Equipment (전력설비에서의 SF6 회수 및 재활용 CDM 방법론 개발)

  • Pyo, Jeong-Gwan;Sa, Jae-Hwan;Jeon, Eui-Chan
    • Journal of Climate Change Research
    • /
    • v.2 no.3
    • /
    • pp.143-159
    • /
    • 2011
  • Projects applying the CDM methodology AM0035 of the $SF_6$ Emission Reductions in Electrical Grids should provide direct monitoring of all the key parameters that are related to estimation of baseline and project emissions including detailed explanations of key operating conditions and procedures, and an explanation addressing uncertainty as the result of EB meeting 41. Through this study, recovery ratio during maintenance, purity of $SF_6$ before and after disposal, replacing, loss rate of $SF_6$ before and after reclamation, leakage emission from electricity consumption and fossil fuel combustion, considered conservatively the key parameter of various monitoring. Consequently, confirmed the reduction in the amount of reduction due to the baseline emission decrease, project emission increase.

Mid- and Long-term Forecast of Forest Biomass Energy in South Korea, and Analysis of the Alternative Effects of Fossil Fuel (한국의 산림바이오매스에너지 중장기 수요-공급전망과 화석연료 대체효과 분석)

  • Lee, Seung-Rok;Han, Hee;Chang, Yoon-Seong;Jeong, Hanseob;Lee, Soo Min;Han, Gyu-Seong
    • New & Renewable Energy
    • /
    • v.18 no.3
    • /
    • pp.1-9
    • /
    • 2022
  • This study analyzed the anticipated supply-and-demand of forest biomass energy (through wood pellets) until 2050, in South Korea. Comparing the utilization rates of forest resources of five countries (United Kingdom, Germany, Finland, Japan, and S. Korea), it was found that S. Korea does not nearly utilize its forest resources for energy purposes. The total demand for wood pellets in S. Korea (based on a power generation efficiency of 38%) was predicted to be 3,629 and 4,371 thousand tons in 2034 and 2050, respectively. The anticipated total wood pellet power generation ratio to target power consumption is 1.13% (5,745 GWh), 1.17% (6,336 GWh), and 1.25% (7,631 GWh) in 2020, 2030, and 2050, respectively. Low value-added forest residues left unattended in forests are called "Unused Forest Biomass" in S. Korea. From the analysis, the total annual potential amount of raw material, sustainably collectible amount, and available amount of wood pellet in 2050 were estimated to be 6,877, 4,814, and 3,370 thousand tons, respectively. The rate of contribution to Nationally Determined Contributions was up to 0.64%. Through this study, the authors found that forest biomass energy will contribute to a carbon neutral society in the near future at the national level.

Prediction of ship power based on variation in deep feed-forward neural network

  • Lee, June-Beom;Roh, Myung-Il;Kim, Ki-Su
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.641-649
    • /
    • 2021
  • Fuel oil consumption (FOC) must be minimized to determine the economic route of a ship; hence, the ship power must be predicted prior to route planning. For this purpose, a numerical method using test results of a model has been widely used. However, predicting ship power using this method is challenging owing to the uncertainty of the model test. An onboard test should be conducted to solve this problem; however, it requires considerable resources and time. Therefore, in this study, a deep feed-forward neural network (DFN) is used to predict ship power using deep learning methods that involve data pattern recognition. To use data in the DFN, the input data and a label (output of prediction) should be configured. In this study, the input data are configured using ocean environmental data (wave height, wave period, wave direction, wind speed, wind direction, and sea surface temperature) and the ship's operational data (draft, speed, and heading). The ship power is selected as the label. In addition, various treatments have been used to improve the prediction accuracy. First, ocean environmental data related to wind and waves are preprocessed using values relative to the ship's velocity. Second, the structure of the DFN is changed based on the characteristics of the input data. Third, the prediction accuracy is analyzed using a combination comprising five hyperparameters (number of hidden layers, number of hidden nodes, learning rate, dropout, and gradient optimizer). Finally, k-means clustering is performed to analyze the effect of the sea state and ship operational status by categorizing it into several models. The performances of various prediction models are compared and analyzed using the DFN in this study.

Performance Characteristics of Organic Rankine Cycles Using Medium Temperature District Heating Water as Heat Source (지역난방용 중온수 열원 유기랭킨사이클 성능 특성)

  • Park, Woo-Jin;Yoo, Hoseon
    • Plant Journal
    • /
    • v.12 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • It is becoming increasingly important to make use of alternative energy source. because It is not able to rely on only fossil fuel for the recent increasing demand of energy consumption. With this situation, lots of studies for utilizing low grade energy such as industrial waste heat, solar energy, and geothermal energy have been conducted. The aim of this study is to predict the operation characteristics of working fluid by using performance analysis program (ThermoFlex) through the system analysis which is not mixing district return water but using ORC(Organic Rankine Cycle, hereinafter ORC) as a downstream cycle when accumulating district heating (hereinafter DH). In this study, We conducted the performance analysis for the case which has the district heating water temperature($120^{\circ}C$) and Flow rate of $163m^3/h$ (including District Heating return water flow), and examined several working fluid which is proper to this temperature. The case using R245fa (which is the best-case) showed 269.2kW power output, 6.37% efficiency. Additionally, Cut down on fuel was expected because of the boiler inlet temperature increase by being Formed $57.3{\sim}85^{\circ}C$ in a temperature of district heating return water, depending on a pressure change of a condenser in ORC system.

  • PDF

An Algorithm for Heavy Duty Truck Priority on Left-turn to Reduce Greenhouse Gas Emissions (온실가스 감축을 위한 대형 화물차 좌회전 우선신호 알고리즘 개발)

  • Yang, Se Jung;Kim, Suhyeon;Kim, Hyo Seung;Lee, Chungwon
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.5
    • /
    • pp.60-70
    • /
    • 2013
  • This study aims to develop a truck priority on left-turn algorithm that can reduce greenhouse gas emissions by reducing heavy duty truck's stops at signalized intersection. The signal priority is granted for a left-turn phase, because heavy duty trucks can deteriorate left-turn traffic flow due to the low acceleration or deceleration rate and large turn radius. Truck priority allows to provide the stable speed control for heavy duty truck, and reduces emissions at the signal intersection. Also, two signal recovery strategies are compared for various traffic conditions. This study analyzes the effectiveness of truck priority such as greenhouse gas emissions and fuel consumption reduction, and total travel time saving using the PARAMICS and Comprehensive Modal Emissions Model (CMEM). The results show that signal priority for heavy duty trucks has an effect on reducing greenhouse gas emissions and fuel consumptions at non-peak hour. Also, it shows decreasing total travel time due to reducing truck stops.

Operational Characteristics of a Dry Electrostatic Precipitator for Removal of Particles from Oxy Fuel Combustion (순산소 연소 배출 입자 제거용 건식 전기집진장치 운전 특성)

  • Kim, Hak-Joon;Han, Bang-Woo;Oh, Won-Seok;Hwang, Gyu-Dong;Kim, Yong-Jin;Hong, Jeong-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.27-34
    • /
    • 2010
  • In a test duct with closed configuration, particle removal performance of an edge-plate type electrostatic precipitator (ESP) was evaluated at a high flow rate in $CO_2$ rich environments by changing gap distances between collection plates, concentrations of $CO_2$, particle sizes, types of electrodes, and types of power supplies. At the same experimental conditions, collection efficiency of particles with the mean particle size, 300 nm, decreased as the gap distance and $CO_2$ concentration increased because of low electrostatic force and low discharged current. In addition, as the particle size increased, the efficiency increased because of high charging rate of the large particles. With the electrode type which has higher surface area of a discharging plate and with the power supply which applied 25 kHz-pulsed DC voltages, the removal efficiency was high even in rich $CO_2$ condition due to high electrostatic force at the same power consumption.

Study on the Drying Characteristics of Poultry Manure for Its Dryer Development (계분건조기 개발을 위한 계분의 건조특성 연구)

  • 장동일
    • Korean Journal of Poultry Science
    • /
    • v.20 no.3
    • /
    • pp.141-149
    • /
    • 1993
  • In order to develop a poultry manure dryer, a pilot dryer was designed and drying experiments were conducted to investigate the drying characteristics of poultry manure. According to the results, the pilot dryer could be operated without any air pollution problems. When poultry manure was dried from 79.2%(w.b. basis) moisture content, the final moisture content ranged from 38.7% to 57.9% depending upon the drying conditions. The drying results showed that drying rate was 189.8~198.0 kg/h and moisture evaporation rate was 124.0~125.4kg-$H_2$O/L. For this drying, electricity requirement was 9.5~19.3 Wh/kg and fuel consumption rate was 6.9~9.3 kg-$H_2$O/L with 50.2~65.1% thermal efficiency.

  • PDF

A Study on the Experimental Measurements and Its Recovery for the Rate of Boil-Off Gas from the Storage Tank of the CO2 Transport Ship (CO2 수송선 저장탱크의 BOG 측정 실험 및 회수에 관한 연구)

  • Park, Jin-Woo;Kim, Dong-Sun;Ko, Min-Su;Cho, Jung-Ho
    • Clean Technology
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • $CO_2$ is generated by the combustion reaction, when getting the energy from fossil fuel. If the carbon dioxide emissions increases more, the global warming problem will become more serious. CCS (carbon capture storage) needs to be developed for the prevention of this. When liquefied $CO_2$ is transported, BOG (boil-off gas) is generated because of several problems. In the study, by injecting liquefied $CO_2$ in two tanks which contains $40m^3$each, the amount of BOG and its composition were measured during 30 days when generating pressure changes and external heat, loading, unloading. In result, 16,040 kg of BOG was generated and the composition has been found out to be 99.95% $CO_2$ and 0.05 % $N_2$. Also, we conducted simulation process for reliquefaction of generated BOG with vapor compression cycle using the PRO/II with PROVISION version 9.2. As a result, the refrigeration cycle of the total circulation flow rate was 42.07 kg/h and the condenser utility consumption was 48.85 kg/h.