• Title/Summary/Keyword: Fuel cell stack model

Search Result 100, Processing Time 0.026 seconds

Hybrid marine propulsion power system with the redox flow batteries of comprehensive aging model

  • Yoo, Seunghyeon;Aguerrevere, Jorge;Jeong, Jinyeong;Jung, Wongwan;Chang, Daejun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.674-690
    • /
    • 2021
  • This study proposes a hybrid marine power system combining dual-fuel generators, a fuel cell, and Vanadium Redox Flow Batteries (VRFB). Rigorous verification and validation of the dynamic modelling and integration of the system are conducted. A case study for the application of the hybrid propulsion system to a passenger ship is conducted to examine its time-variant behaviour. A comprehensive model of the reversible and irreversible capacity degradation of the VRFB stack unit is proposed and validated. The capacity retention of the VRFB stack is simulated by being integrated within the hybrid propulsion system. Reversible degradation of the VRFB stack is precisely predicted and rehabilitated based on the predefined operational schedule, while the irreversible portion is retained until the affected components are replaced. Consequently, the advantages of the VRFB system as an on-board ESS are demonstrated through the application of a hybrid propulsion system for liner shipping with fixed routes.

디지털제어 DC-DC컨버터로 구성된 계통연계 연료전지발전 시뮬레이션모델 개발 (Development of Simulation Model for Grid-tied Fuel-Cell Power Generation with Digital Controlled DC-DC Converter)

  • 주영아;차민영;한병문;강태섭;차한주
    • 전기학회논문지
    • /
    • 제58권9호
    • /
    • pp.1728-1734
    • /
    • 2009
  • This paper proposes a new power conditioning system for the fuel cell power generation, which consists of a ZVS DC-DC converter and 3-phase inverter. The ZVS DC-DC converter with a digital controller boosts the fuel cell voltage of 26-50V up to 400V, and the grid-tie inverter controls the active power delivered to the grid. The operation of proposed power conditioning system was verified through simulations with PSCAD/EMTDC software. The feasibility of hardware implementation was verified through experimental works with a laboratory prototype, which was built with 1.2kW PEM fuel-cell stack, 1kW DC-DC converter, and 3kW PWM inverter. The proposed system can be utilized to commercialize an interconnection system for the fuel-cell power generation.

PEM 연료전지 시스템 모델링-자동차용 연료전지 시스템의 주요 작동 변수 변경에 따른 시스템 효율 민감도 분석 (Modeling of PEM Fuel Cell System-Sensitivity Analysis of System Efficiency with Different Main Operating Parameters of Automotive Fuel Cell System)

  • 김한상;강병길;원권상
    • 한국수소및신에너지학회논문집
    • /
    • 제30권5호
    • /
    • pp.401-410
    • /
    • 2019
  • The operating conditions greatly impact the efficiency and performance of polymer electrolyte membrane (PEM) fuel cell systems and must be properly managed to ensure better performance and efficiency. In particular, small variations in operating conditions interact with each other and affect the performance and efficiency of PEM fuel cell systems. Thus, a systematic study is needed to understand how small changes in operating conditions affect the system performance and efficiency. In this paper, an automotive fuel cell system (including cell stack and balance of plant [BOP]) with a turbo-blower was modeled using MATLAB/Simulink platform and the sensitivity analyses of main operating parameters were performed using the developed system model. Effects of small variations in four main parameters (stack temperature, cathode air stoichiometry, cathode pressure, and cathode relative humidity) on the system efficiency were investigated. The results show that cathode pressure has the greatest potential impact on the sensitivity of fuel cell system efficiency. It is expected that this study can be used as a basic guidance to understand the importance of achieving accurate control of the fuel cell operating conditions for the robust operation of automotive PEM fuel cell systems.

1 kWe 급 고체산화물 연료전지 스택에서의 유동 해석 (Numerical Analysis in a 1 kWe SOFC Stack for the Flow Phenomena)

  • 이근우;김영진;윤호원;김현진;윤경식;유지행
    • 한국수소및신에너지학회논문집
    • /
    • 제34권2호
    • /
    • pp.196-204
    • /
    • 2023
  • This study performed the numerical analysis of the internal flow phenomena of 1 kWe-class solid oxide fuel cell (SOFC) stacks with internal manifold type and planar cells using commercial computational fluid dynamics (CFD) software, Star-CCM+. In particular, the locations where the turbulent phenomena occur inside the SOFC stack were investigated. In addition, the laminar flow model and the standard k-ε turbulent model were used to calculate the SOFC stack, separately. And, the calculation results of both laminar and turbulent models were compared. The calculation results showed that turbulent phenomena occurred mainly in the cathode flow. Especially, the turbulent phenomena were found in the cathode inlet/outlet region, and local turbulence occurred in the end plate near the inlet pipe.

고분자 전해질 연료전지용 막가습기의 상대습도 추정을 위한 소프트센서 개발 (Soft Sensor Development for Predicting the Relative Humidity of a Membrane Humidifier for PEM Fuel Cells)

  • 한인수;신현길
    • 한국수소및신에너지학회논문집
    • /
    • 제25권5호
    • /
    • pp.491-499
    • /
    • 2014
  • It is important to accurately measure and control the relative humidity of humidified gas entering a PEM (polymer electrolyte membrane) fuel cell stack because the level of humidification strongly affects the performance and durability of the stack. Humidity measurement devices can be used to directly measure the relative humidity, but they cost much to be equipped and occupy spaces in a fuel cell system. We present soft sensors for predicting the relative humidity without actual humidity measuring devices. By combining FIR (finite impulse response) model with PLS (partial least square) and SVM (support vector machine) regression models, DPLS (dynamic PLS) and DSVM (dynamic SVM) soft sensors were developed to correctly estimate the relative humidity of humidified gases exiting a planar-type membrane humidifier. The DSVM soft sensor showed a better prediction performance than the DPLS one because it is able to capture nonlinear correlations between the relative humidity and the input data of the soft sensors. Without actual humidity sensors, the soft sensors presented in this work can be used to monitor and control the humidity in operation of PEM fuel cell systems.

용융탄산염 연료전지 스택 온도 조절을 위한 분리판에 관한 수치 해석 연구 (Numerical Studies of a Separator for Stack Temperature Control in a Molten Carbonate Fuel Cell)

  • 김도형;김범주;임희천
    • 한국수소및신에너지학회논문집
    • /
    • 제22권3호
    • /
    • pp.305-312
    • /
    • 2011
  • The use of a separator to control stack temperature in a molten carbonate fuel cell was studied by numerical simulation using a computational fluid dynamics code. The stack model assumed steady-state and constant-load operation of a co-flow stack with an external reformer at atmospheric pressure. Representing a conventional cell type, separators with two flow paths, one each for the anode and cathode gas, were simulated under conditions in which the cathode gas was composed of either air and carbon dioxide (case I) or oxygen and carbon dioxide (case II). The results showed that the average cell potential in case II was higher than that in case I due to the higher partial pressures of oxygen and carbon dioxide in the cathode gas. This result indicates that the amount of heat released during the electrochemical reactions was less for case II than for case I under the same load. However, simulated results showed that the maximum stack temperature in case I was lower than that in case II due to a reduction in the total flow rate of the cathode gas. To control the stack temperature and retain a high cell potential, we proposed the use of a separator with three flow paths (case III); two flow paths for the electrodes and a path in the center of the separator for the flow of nitrogen for cooling. The simulated results for case III showed that the average cell potential was similar to that in case II, indicating that the amount of heat released in the stack was similar to that in case II, and that the maximum stack temperature was the lowest of the three cases due to the nitrogen gas flow in the center of the separator. In summary, the simulated results showed that the use of a separator with three flow paths enabled temperature control in a co-flow stack with an external reformer at atmospheric pressure.

용융 탄산염 연료전지의 분리판 내 연료 분배 해석 (A study for gas distribution in separators of molten carbonate fuel cell)

  • 박준호;차석원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.82.2-82.2
    • /
    • 2011
  • A channel design which is closely related with the mass transport overpotential is one of the most important procedures to optimize the whole fuel cell performance. In this study, three dimensional results of a numerical study for gas distribution in channels of a molten carbonate fuel cell (MCFC) unit cell for a 1kW class stack was presented. The relationship between the fuel and air distribution in the anode and cathode channels of the unit cell and the electric performance was observed. A charge balance model in the electrodes and the electrolyte coupled with a heat transfer model and a fluid flow model in the porous electrodes and the channels was solved for the mass, momentum, energy, species and charge conservation. The electronic and ionic charge balance in the anode and cathode current feeders, the electrolyte and GDEs were solved for using Ohm's law, while Butler-Volmer charge transfer kinetics described the charge transfer current density. The material transport was described by the diffusion and convection equations and Navier-Stokes equations govern the flow in the open channel. It was assumed that heat is produced by the electrochemical reactions and joule heating due to the electrical currents.

  • PDF

파라미터 보간법을 이용한 3MW급 MCFC 시스템의 정상 및 비정상 상태 설계 (Steady and Dynamic Modeling of 3MW MCFC System Conceptual Design Using Parameter Interpolation Method)

  • 김민기;조인정;김윤미;강민관;이상훈;김재식
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.87.2-87.2
    • /
    • 2010
  • The steady and dynamic process model for an internal reforming molten carbonate fuel cell power plant is discussed in this paper. The dominant thermal and chemical dynamic processes are modeled for the stack module and balance-of-plant, including cathode gas preparation, heat recovery, heat loss (Each heat loss amount for the stack and MBOP is obtained from real plant data) and fuel processing. Based on dynamic model and control demand, PID controllers are designed in the whole system. By applying these controllers we can obtain temperature balance of stack and control system depending on changing steam to carbon ratio, air feed amount, and transient condition.

  • PDF

제어로직 검증 및 운전원 훈련용 연료전지 시뮬레이터 (A Fuel Cell Simulator for Control Logic Verification and Operator Training)

  • 맹좌영;김성호;정원희;강승엽;홍석규;이세경;육심균
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.75.1-75.1
    • /
    • 2010
  • This research presents a fuel cell simulator for control logic verification and operator training. Nowadays, power industries are focusing on clean energy as a response to new policy. The fuel cell can be the solution for clean energy, but operating technology is not well developed compared to other conventional power plans because of its short history. Therefore we need a simulator to verify the new control strategy and train operators, because the price of a real fuel cell system is too high and mechanically weak to be used for these kind of purposes. To develop the simulator, a 300 KW MCFC(Molten Carbonate Fuel Cell) system was modeled with stack, BOPs(pre-reformer, steam generator, etc) and mechanical components(valves, pipes, pumps, blowers, etc). The process model was integrated to emulated control system and HMI(Human Machine Interface). A static load and open loop tests were conducted for verifying the accuracy of the process model, since it is the most important part in the simulation. After verifying the process model, an automatic load change and start-up tests were conducted to verify the performance of a new control strategy(logic and functional loops).

  • PDF

연료전지 자동차의 주행성능 예측을 위한 전기자동차 및 연료전지의 성능실험과 수학적 모델링 (Measurements and Numerical Analysis of Electric Cart and Fuel Cell to Estimate Operating Characteristic of FCEV)

  • 조용석;김득상;안석종
    • 한국자동차공학회논문집
    • /
    • 제14권5호
    • /
    • pp.65-72
    • /
    • 2006
  • In new generation vehicle technologies, a fuel cell vehicle becomes more important, by virtue of their emission merits. In addition, a fuel cell is considered as a major source to generate the electricity for vehicles in near future. This paper focuses on modeling of not only an electric vehicle and but also a fuel cell vehicle to estimate performances. And an EV cart is manufactured to verify the modeling. Speed, voltage, and current of the vehicle and modeling are compared to estimate them at acceleration test and driving mode test. The estimations are also compared with the data of the Ballard Nexa fuel cell stack. In order to investigate a fuel cell based vehicle, motor and fuel cell models are integrated in a electric vehicle model. The characteristics of individual components are also integrated. Calculated fuel cell equations show good agreements with test results. In the fuel cell vehicle simulation, maximum speed and hydrogen fuel consumption are estimated. Even though there is no experimental data from vehicle tests, the vehicle simulation showed physically-acceptable vehicle characteristics.