• Title/Summary/Keyword: Fuel budget

Search Result 42, Processing Time 0.027 seconds

Fuel Optimization for Low Earth Orbit Maintenance (최적화 기법을 이용한 초저고도 운용위성 연료량 분석)

  • Park, Yong-Jae;Park, Sang-Young;Kim, Young-Rok;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.2
    • /
    • pp.167-180
    • /
    • 2008
  • The resolution of Earth images taken from a satellite has close relation with satellite's altitude. If a satellite has lower altitude, it gets a picture having better resolution. However the satellite will be exposed to heavier air drag and will spend more fuel to maintain its altitude for a desired mission. Therefore, in this study, the required fuel to maintain very low earth orbit(LEO) with severe air drag is analyzed using optimization method such as collocation method. The required fuel to maintain the low altitude has significantly increased as the mission altitude is lowered and the solar activity is maximized. This study also shows that the fuel reduced by increasing the period of the satellite maneuver is very small, and that slightly increasing the satellite's mission altitude is much effective in reducing the amount of fuel to maintain its altitude. The calculated fuel to maintain very low earth orbit in this study would give useful information in planning the budget of fuel and cost for LEO satellites.

A Comparison of the Goodness-of-Fit between Two Models of Expenditure Function: a Single-Equation Model versus a Complete- System-of-Demand-Equation Model (단일방정식과 관련방정식체계를 적용한 소비지출 함수의 모델 적합성 비교)

  • 황덕순;김숙향
    • Journal of Families and Better Life
    • /
    • v.20 no.1
    • /
    • pp.45-56
    • /
    • 2002
  • The main purposes of this article are to introduce the theoretical backgrounds and empirical application methods of two different Models for the function of expenditure, and to compare the goodness-o(-fit of the two models: a single-equation model and a complete-system-of-demand-equation model. For the empirical analysis of the single-equation model, a linear formula and a double-leg formula were employed. In order to test the complete-system-of-demand-equation model empirically, the \"Linear Approximation/Almost Ideal Demand System (LA/AIDS)" was used. The independent variables were the total living expense and expenditure categories Price index. The data used in this study were obtained from the quarterly statistics of "The Annual Report on the Urban Family Income and Expenditure Survey (Dosigagyeyonbo)" and "The Annual Report on the Consumer Price Index (Sobijamulgajaryo)," for the years 1994 to 1997. The goodness-of-fit (R-square) was higher with the complete-system-of-demand-equation model than with the single-equation model for the budget share on food (excluding eating-out expenses) and for the share on cultural and recreational activities. However, there was no difference between the two models in terms of the proportion of the expenditure on automobile fuel.fuel.

Global Carbon Budget Changes under RCP Scenarios in HadGEM2-CC (HadGEM-CC 모델의 RCP 시나리오에 따른 전지구 탄소수지 변화 전망)

  • Heo, Tae-Kyung;Boo, Kyung-On;Shim, Sungbo;Hong, Jinkyu;Hong, Je-Woo
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.85-97
    • /
    • 2015
  • This study is to investigate future changes in carbon cycle using the HadGEM2-Carbon Cycle simulations driven by $CO_2$ emissions. For experiment, global carbon budget is integrated from the two (8.5/2.6) representative concentration pathways (RCPs) for the period of 1860~2100 by Hadley Centre Global Environmental Model, version 2, Carbon Cycle (Had-GEM2-CC). From 1985 to 2005, total cumulative $CO_2$ amount of anthropogenic emission prescribed as 156 GtC. The amount matches to the observed estimates (CDIAC) over the same period (136 GtC). As $CO_2$ emissions into the atmosphere increase, the similar increasing tendency is found in the simulated atmospheric $CO_2$ concentration and temperature. Atmospheric $CO_2$ concentration in the simulation is projected to be 430 ppm for RCP 2.6 at the end of the twenty-first century and as high as 931 ppm for RCP 8.5. Simulated global mean temperature is expected to rise by $1.6^{\circ}C$ and $3.5^{\circ}C$ for RCP 2.6 and 8.5, respectively. Land and ocean carbon uptakes also increase in proportion to the $CO_2$ emissions of RCPs. The fractions of the amount of $CO_2$ stored in atmosphere, land, and ocean are different in RCP 8.5 and 2.6. Further study is needed for reducing the simulation uncertainty based on multiple model simulations.

Energy Balance Analysis of 30 t Thrust Level Liquid Rocket Engine (추력 30톤급 액체로켓엔진의 에너지 밸런스 해석)

  • Cho, Won-Kook;Park, Soon-Young;Kim, Chul-Woong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.563-569
    • /
    • 2012
  • An energy balance analysis is conducted for a 30 t thrust level liquid rocket engine. The relations between thrust and combustion pressure, between thrust and propellant flow rate, and between combustion pressure and fuel pump pressure rise are compared against those indicated by a published database of the existing rocket engines. A combustion pressure higher than the old design value is obtained, implying that the present design is high-performance oriented. The thrust to propellant flow rate ratio is the same as that of the existing engines, indicating that the specific impulse performance is at the usual level. The fuel pump pressure rise is found to be slightly high when the combustion pressure is considered, and it is attributed to the pressure budget of the present ground test engine not being optimized.

Dynamic Behaviors of a Single Vortex in Counter Non-reacting and Reacting Flow Field (대향류 반응 및 비반응 유동장에서의 단일 와동의 동적 거동)

  • Yoo, Byung-Hun;Oh, Chang-Bo;Hwang, Chul-Hong;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1262-1272
    • /
    • 2003
  • A two-dimensional direct numerical simulation is performed to investigate the dynamic behaviors of a single vortex in counter reacting and non-reacting flow field. A predictor-corrector-type numerical scheme with a low Mach number approximation is used in this simulation. A 16-step augmented reduced mechanism is adopted to treat the chemical reaction. The budget of the vorticity transport equation is examined to reveal a mechanism leading to the formation, destruction and transport of a single vortex according to the direction of vortex generation in reacting and non-reacting flows. The results show that air-side vortex has more larger strength than that of fuel-side vortex in both non-reacting and reacting flows. In reacting flow, the vortex is more dissipated than that in non-reacting flow as the vortex approach the flame. The total circulation in reacting flow, however, is larger than that in non-reacting flow because the convection transport of vorticity becomes much large by the increased velocity near the flame region. It is also found that the stretching and the convection terms mainly generate vorticity in non-reacting and reacting flows. The baroclinic torque term generates vorticity, while the viscous and the volumetric expansion terms attenuate vorticity in reacting flow. Furthermore, the contribution of volumetric expansion term on total circulation for air-side vortex is much larger than that of fuel-side vortex. It is also estimated that the difference of total circulation near stagnation plane according to the direction of vortex generation mainly attributes to the convection term.

Electricity Price Prediction Based on Semi-Supervised Learning and Neural Network Algorithms (준지도 학습 및 신경망 알고리즘을 이용한 전기가격 예측)

  • Kim, Hang Seok;Shin, Hyun Jung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.1
    • /
    • pp.30-45
    • /
    • 2013
  • Predicting monthly electricity price has been a significant factor of decision-making for plant resource management, fuel purchase plan, plans to plant, operating plan budget, and so on. In this paper, we propose a sophisticated prediction model in terms of the technique of modeling and the variety of the collected variables. The proposed model hybridizes the semi-supervised learning and the artificial neural network algorithms. The former is the most recent and a spotlighted algorithm in data mining and machine learning fields, and the latter is known as one of the well-established algorithms in the fields. Diverse economic/financial indexes such as the crude oil prices, LNG prices, exchange rates, composite indexes of representative global stock markets, etc. are collected and used for the semi-supervised learning which predicts the up-down movement of the price. Whereas various climatic indexes such as temperature, rainfall, sunlight, air pressure, etc, are used for the artificial neural network which predicts the real-values of the price. The resulting values are hybridized in the proposed model. The excellency of the model was empirically verified with the monthly data of electricity price provided by the Korea Energy Economics Institute.

Analysis on the Structure of Farm Household Income & Expenditure by Farming Types -Using Housekeeping Books of Farm Household in 1988- (농가유형별로 본 농가소득 및 소비지출 구조분석 -'88 농가가계부를 중심으로-)

  • 김인숙
    • Journal of the Korean Home Economics Association
    • /
    • v.28 no.3
    • /
    • pp.105-125
    • /
    • 1990
  • The 78 housekeeping books were analyzed to find out the structure of income and expenditure of the farm household. The selected farm households were classified into 4 different farming types such as rice-cultivating, vinyl house, fruit-growing, and livestock farming. The results are summarized as follows : 1) The farm housekeeper ought to rationally manage farm household money income, because agricultural income was preponderated to several months regardless of farming types. 2) Farm household income was primarily dependent upon agricultural income and non-agricultural income in the livestock farming and rice-cultivating farm houshold respectively. 3) order of living expenses of the total farm households were recreation and entertainment expenses, food expenses, education expenses, and housing, fuel & light expenses in size. The major expenses were education expenses, food expenses and miscellaneous expenses in rice-cultivating, vinyl house and livestock farming, and fruit growing farm households respectively. 4) Balance of income and expenses of the farm household, s its time, size, and pattern of increase and decrease, was different by farming types. 5) Household expenses increased in February, May, August and December, though disposable income reversely decreased in February, April, August and December compared to each former month. So, special consideration should be taken into budget planning for household money management in February, August and December.

  • PDF

The Effect of Spending Distribution on Financial Well-Being among Young Working Women

  • ZAINOL, Zuraidah;OMAR, Nor Asiah;ZAINOL, Zuraini;MOHD SHOKORY, Suzyanty;ABAS, Bahijah
    • Journal of Distribution Science
    • /
    • v.20 no.11
    • /
    • pp.1-9
    • /
    • 2022
  • Purpose: This study determines the effect of spending distribution, namely experiential, impulsive, self-expressive, prosocial, and conspicuous spending, on the financial well-being of young working women in Malaysia. Research design, data and methodology: This study employed a quantitative and deductive approach. A sample of 400 young working women was selected using a systematic sampling technique. Data were collected using a self-administered questionnaire and analysed using Structural Equation Modelling (CB-SEM). Results: The findings revealed prosocial and impulsive spending as the significant spending distribution to affect financial well-being. The effect of prosocial spending is positive on financial well-being, while the effect of impulsive spending is a negative predictor of financial well-being. All other spending distribution - experiential, self-expressive, and conspicuous spending - do not have a significant effect on financial well-being. Conclusion: To achieve financial well-being, young working women need to distribute the spending budget for the happiness of others and reduce impulse buying. The findings provide useful insights on the significant role of spending distribution in influencing, how to fuel young working women to develop good spending habits that consequently improve their financial well-being, for themselves and Malaysian economics, as well as the plausible solution to overcome financial problems and high indebtedness.

The Economic Evaluation of the Renewable Energy Projects using the Geske Model (게스케(Geske) 모델을 이용한 신재생에너지사업의 경제성 분석)

  • Jaehun Sim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.31-41
    • /
    • 2022
  • As the environmental impacts of fossil fuel energy sources increase, the South Korean government has tried to change non-environmental-friendly enery sources to environmental-friendly energy sources in order to mitigate environmental effects, which lead to global warming and air pollution. With both a limited budget and limited time, it is essential to accurately evaluate the economic and environmental effects of renewable energy projects for the efficient and effective operation of renewable energy plants. Although the traditional economic evaluation methods are not ideal for evaluating the economic impacts of renewable energy projects, they can still be used for this purpose. Renewable energy projects involve many risks due to various uncertainties. For this reason, this study utilizes a real option method, the Geske compound model, to evaluate the renewable energy projects on Jeju Island in terms of economic and environmental values. This study has developed an economic evaluation model based on the Geske compound model to investigate the influences of flexibility and uncertainty factors on the evaluation process. This study further conducts a sensitivity analysis to examine how two uncertainty factors (namely, investment cost and wind energy production) influence the economic and environmental value of renewable energy projects.

Design of Micro Water Supply System Using Solar Energy

  • Sharma, Ekisha;Khatiwada, Nawa Raj;Ghimire, Anish
    • Journal of Appropriate Technology
    • /
    • v.5 no.1
    • /
    • pp.8-17
    • /
    • 2019
  • Solar pumps, for water lift systems, is becoming popular in rural areas for supplying drinking water in dry seasons when its need is elevated. The development in technology has also made solar pumps readily available and cheap which has increased its demands. So, for scattered settlements having a limited budget for operation and maintenance costs, solar pump is preferred over grid connected electrical pumping systems. This primary objective of the study was to design a solar photovoltaic pumping drinking water supply system for a small health post which is about 45 km east from Kathmandu, the capital city of Nepal. The study also compared and verified the final design with the system's existing design prepared by a development agency. The water source for this study was a confined aquifer 115m below the surface. The water demand was calculated to be 11m3 per day. A 1500 kPa submersible pump attached to a motor was selected and installed. Along with that twelve solar panels, reservoir, transmission main and distribution main was designed. The outcomes conclude solar photovoltaic pumping water supply systems to be cost-effective with an estimated cost of only USD 0.84 million per MLD. Solar pumps require low maintenance and operation costs and its repairs can quickly be done by the local people. The study also shows that solar technology produces no sound, needs no fuel making it environmentally friendly.