• 제목/요약/키워드: Fuel Simulation

검색결과 1,749건 처리시간 0.028초

Analysis of CANDU-6 Transition Core Refuelled from 37-Element Fuel to CANFLEX-NU Fuel

  • Jeong, Chang-Joon;Lee, Young-Ouk;Suk, Ho-Chun
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.77-82
    • /
    • 1997
  • The CANDU-6 transition core refuelled from 37-element fuel to CANFLEX-NU fuel has been evaluated by an 100full power day time-dependent fuel-management simulation to find the core compatibility with the CANFLEX fuel loading. The simulation calculations for the transition core were carried out with the RFSP code, provided by the cell averaged fuel properties obtained from the POWDERPUFS-V code. The simulation results were compared with those of the current 37-element fuel loading only. The results show that the CANFLEX-NU fuel bundles will be compatible with the CANDU-6 reactor because the core physics characteristics of CANFLEX-NU fuel are very similar to those of the 37-element fuel bundle.

  • PDF

전자유압식 초고압 연료분사계의 시뮬레이션에 관한 연구 (Computer Simulation of the Electronic Hydraulic Ultra - High Pressure Fuel Injection System)

  • 장세호;안수길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권5호
    • /
    • pp.82-92
    • /
    • 1996
  • A computer simulation with predict the fuel injection rates and the fuel injection pressure behaviors in diesel engine fuel injection systems would by very useful in designing or improving fuel injection systems. In this paper we developed computer program in order to predict the behaviors of the fuel injection rate and the injection pressure for Electronic Hydraulic Ultra-High Pressure Fuel Injection System. We've applied the continuity and momentum equations for the hydraulic phenomena and the dynamics of individual components of the Electronic Hydraulic Fuel Injection System. To solve all the equations numerically we've applied the Runge-kutta IV method. Water hammer equations were applied for the hydraulic pipe solution, and the method of characteristics was employed in our calculations. The simulation results were compared with the experimental results for: Accumulator pressure, Injection pressure and unjection rate. As a result, The simulation results agree very well with our experimental results. We found that a large accumulator and the high speed solenoid valve were required, and the compression volume of the fuel had to be as small as possible in order to acheive ultra-high pressure fuel injection.

  • PDF

Effects of sizes and mechanical properties of fuel coupon on the rolling simulation results of monolithic fuel plate blanks

  • Kong, Xiangzhe;Ding, Shurong;Yang, Hongyan;Peng, Xiaoming
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1330-1338
    • /
    • 2018
  • High-density UMo/Zr monolithic nuclear fuel plates have a promising application prospect in high flux research and test reactors. The solid state welding method called co-rolling is used for their fabrication. Hot co-rolling simulations for the composite blanks of UMo/Zr monolithic nuclear fuel plates are performed. The effects of coupon sizes and mechanical property parameters on the contact pressures between the to-be-bonded surfaces are investigated and analyzed. The numerical simulation results indicate that 1) the maximum contact pressures between the fuel coupon and the Zircaloy cover exist near the central line along the plate length direction; as a whole the contact pressures decrease toward the edges in the plate width direction; and lower contact pressures appear at a large zone near the coupon corner, where de-bonding is easy to take place in the in-pile irradiation environments; 2) the maximum contact pressures between the fuel coupon and the Zircaloy parts increase with the initial coupon thickness; after reaching a certain thickness value, the contact pressures hardly change, which was mainly induced by the complex deformation mechanism and special mechanical constitutive relation of fuel coupon; 3) softer fuel coupon will result in lower contact pressures and form interfaces being more out-of-flatness.

Fuel Management Simulation for CANFLEX-RU in CANDU 6

  • Jeong, Chang-Joon;Suk, Ho-Chun
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.147-151
    • /
    • 1997
  • Fuel management simulation have been performed for CANFLEX-0.9% RU fuel in the CANDU 6 reactor. In this study, the bi-directional 4-bundle shift fuelling scheme was assumed The lattice cell and time-average calculation were carried out. The refuelling simulation calculations were performed for 600 full power days. Time-averaged results show good axial power profile with the CANFLEX-RU fuel. During the simulation period, the maximum channel and bundle power were maintained below the licensing limit of CANDU 6 reactor.

  • PDF

고분자 전해질 연료전지용 분리판 최적 설계 (Optimal Design of Bipolar-Plates for a PEM Fuel Cell)

  • 한인수;정지훈;임종구;임찬;정광섭
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.99-102
    • /
    • 2006
  • Optimal flow-field design of bipolar-plates for a commercial class PEM(polymer electrolyte membrane) fuel cell stack was carried out on the basis of three-dimensional computational fluid dynamics(CFD) simulation. A three-dimensional CFD model originally developed by Shimpalee et al., has been utilized for performing large-scale simulation of a single fuel cell consisting of bipolar-plates gas diffusion layers, and a membrane-electrode-assembly(MEA). The CFD model is able to predict the current density, pressure drops, gas velocities, vapor and liquid water contents, temperature distributions, etc. inside a single fuel cell. Depending on simulation results from the CFD modeling of a PEM fuel cell, several flow-fields of bipolar-plates were designed and verified. The final design of the bipolar-plate has been chosen from the simulations and experimental tests and showed the best performance as expected from the simulation results under a normal operating condition. Thus, the CFD simulation approach to design the optimal flow-field of the bipolar-plates was successful. The final design was adopted as the best flow-field to build a commercial scale PEM fuel cell stack, the performance of which shows about 42% higher than that of the older bipolar-plate design.

  • PDF

외장형 연료펌프를 사용한 LPLi시스템에서 연료의 상태량 변화 예측 (Prediction of Fuel Properties on LPLi System with an External Fuel Pump)

  • 김재형;윤여빈;박영준;송춘섭;이성욱;조용석
    • 한국분무공학회지
    • /
    • 제15권1호
    • /
    • pp.38-43
    • /
    • 2010
  • The LPG(Liquefied Petroleum Gas) fuel attracts attention as a clean alternative fuel. In order to further reduce the exhaust emission and improve performance in LPG engines, the LPLi(Liquid Phase LPG Injection) system is used. In LPLi system, the fuel pump performance is important for keeping the LPG over it's saturated vapor pressure. An external fuel pump is needed to improve the durability for LPG engines. This paper predicted the variation of fuel properties on the LPLi system with an external fuel pump. From each component's thermodynamic model, an 1-D simulation is developed for LPLi system with an external fuel pump. Then the 1-D simulation data analyzed and compared with the rig-test. The 1-D simulation and the rig-test produced similar results.

Development of simulation model for fuel efficiency of agricultural tractor

  • Kim, Wan-Soo;Kim, Yong-Joo;Chung, Sun-Ok;Lee, Dae-Hyun;Choi, Chang-Hyun;Yoon, Young-Whan
    • 농업과학연구
    • /
    • 제43권1호
    • /
    • pp.116-126
    • /
    • 2016
  • The objective of this study is to predict the fuel efficiency of an agricultural tractor. The fuel efficiency of the tractor during rotary tillage was predicted using numerical modeling. A numerical model was developed using Simulation X. Based on tractor power flow, numerical modeling consisted of an engine, transmission, PTO (power take off), and hydraulics. The specifications of major components utilized in the numerical model were the same as those of a 71 kW tractor (field test tractor). The load that was inputted for fuel efficiency prediction into the simulation model was obtained from a field test. Fuel efficiency predictions were conducted by comparing field test results and simulation results. In addition, it was performed by dividing the rotary tillage and steering section. Main results are as follows: first, t-values of engine torque were measured to be 0.31 in the rotary tillage and 0.92 in the steering section. Second, t-values of fuel consumption were measured to be 0.51 and 5.41 in the rotary tillage and the steering section, respectively. Finally, t-values of fuel efficiency were measured to be 1.72 and 40 in the rotary tillage and the steering section, respectively. The results show no significant differences with t-values of less than 5% in the rotary tillage. But, it shows significant differences in the steering section. Therefore, simulation for accurate fuel efficiency prediction requires a suitable algorithm or detailed design of the simulation model in the steering section.

연료전지의 인버터 운전 시뮬레이션 (Fuel Cell Inverter Operation for Distributed Generation of simulation)

  • 정동효
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.170-174
    • /
    • 2007
  • Recently, a fuel cell is remarkable for new generation system. The fuel cell generation system converts the chemical energy of a fuel directly into electrical energy. The fuel cell generation is characterized by low voltage and high current. For connecting to utility, it needs both a step up converter and an inverter. The step up converter makes DC link and the inverter changes DC to AC. In this paper full bridge converter and the single phase inverter are designed and installed for fuel cell. Simulation and experiment verify that fuel cell generation system could be applied for the distributed generation.

  • PDF

경사가 포함된 도로의 주행시 실제 주행연비 예측 (Estimation of Real Driving Fuel Consumption Rate of a Vehicle When Driving on Road Including Grade)

  • 박진호;박영일;이장무
    • 한국자동차공학회논문집
    • /
    • 제8권3호
    • /
    • pp.65-76
    • /
    • 2000
  • To measure the fuel consumption rate of a vehicle, a car is tested on chassis dynamometer following given driving mode. But the fuel consumption rate measured by this method may be somewhat different from that measured in on-road driving conditions. It may be due to not considering road grade in driving modes. In this study, new driving modes which include road grade are proposed, and the simulation program to estimate the real driving fuel consumption rate of a vehicle is developed. On-road car tests to verify the simulation program are carried out and the results of the simulation are analysed and compared with those of the experiments.

  • PDF

OPTIMIZATION ON VEHICLE FUEL CONSUMPTION IN A HIGWAY BUS USING VEHICLE SIMULATION

  • Lyu, M.S.
    • International Journal of Automotive Technology
    • /
    • 제7권7호
    • /
    • pp.841-846
    • /
    • 2006
  • This paper presents a numerical approach to optimizing vehicle fuel economy in a higway bus. The method described is based on using a commercial software vehicle simulation to identify the relative efficiency of each of the vehicle systems, such as the engine hardware, engine software calibration, transmission, cooling system and ancillary drives. The simulation-based approach offers a detailed understanding of which vehicle systems are underperforming and by how much the vehicle fuel economy can be improved if those systems are brought up to best-in-class performance. In this way, the optimum vehicle fuel economy can be provided to the vehicle customer. A further benefit is that the simulation requires only a minimum number of vehicle testing for initial validation, with all subsequent field test cycles performed in software, thereby reducing development time and cost for the manufacturer.