• 제목/요약/키워드: Fuel Rich Region

검색결과 37건 처리시간 0.024초

X선 위상차 가시화 기법을 이용한 GDI 인젝터 노즐 근방의 분무 간 상호간섭 해석 (Analyzing the Spray-to-spray Interaction of GDI Injector Nozzle in the Near-field Using X-ray Phase-Contrast Imaging)

  • 배규한;문석수
    • 한국분무공학회지
    • /
    • 제25권2호
    • /
    • pp.60-67
    • /
    • 2020
  • Despite its benefit in engine thermal efficiency, gasoline-direct-injection (GDI) engines generate substantial particulate matter (PM) emissions compared to conventional port-fuel-injection (PFI) engines. One of the reasons for this is that the spray collapse caused by the spray-to-spray interaction forms the locally rich fuel-air mixture and increases the fuel wall film. Previous studies have investigated the spray collapse phenomenon through the macroscopic observation of spray behavior using laser optical techniques, but it is somewhat difficult to understand the interaction between sprays that is initiated in the near-nozzle region within 10 mm from the nozzle exit. In this study, the spray structure, droplet size and velocity data were obtained using an X-ray imaging technique from the near-nozzle to the downstream of the spray to investigate the spray-to-spray interaction and discuss the effects of spray collapse on local droplet size and velocity distribution. It was found that as the ambient density increases, the spray collapse was promoted due to the intensified spray-to-spray interaction, thereby increasing the local droplet size and velocity from the near-nozzle region as a result of droplet collision/coalescence.

직분식 가솔린기관 내에서 피스톤 형상이 연료혼합기 거동에 미치는 영향 (The Effect of Piston Bowl Shape on Behavior of Vapor Phase in a GDI Engine)

  • 황필수;강정중;김덕줄
    • 대한기계학회논문집B
    • /
    • 제26권4호
    • /
    • pp.614-621
    • /
    • 2002
  • This study was performed to investigate the behavior of vapor phase of fuel mixtures with different piston bowl shapes(F, B and R-type) in a optically accessible engine. The images of liquid and vapor phases were captured in the motoring engine using exciplex fluorescence method. Fuel was injected into atmospheric nitrogen to prevent quenching phenomenon by oxygen. Injection pressure was 5.1MPa. Two dimensional spray fluorescence image of vapor phase was acquired to analyze spray behaviors and fuel distribution inside of cylinder. Four injection timings were set at BTDC 90$^{\circ}$, 80$^{\circ}$, 70$^{\circ}$, and 60$^{\circ}$. With a fuel injection timing of BTDC 90$^{\circ}$, fuel-rich mixture level in the center region was highest in a B-type piston. With a fuel injection timing of BTDC 60$^{\circ}$, R-type piston was best. R-type piston shape was suitable under enhanced swirl ratio and late injection condition and B-type piston shape was right in a weak swirl ratio. It was found that the piston bowl shape affected the mixture stratification inside of cylinder.

피스톤 형상에 따른 직분식 가솔린기관 내에서의 연료혼합기 거동특성 연구 (The Effect of Piston Bowl Shape on Behavior of Vapor Phases in a GDI Engine)

  • 황필수;강정중;김덕줄
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.915-920
    • /
    • 2001
  • This study was performed to investigate the behavior of vapor phase of fuel mixtures with different piston bowl shapes(F, B, and R-type) in a optically accessible engine. The images of liquid and vapor phases were captured in the motoring engine using exciplex fluorescence method. Fuel was injected into atmospheric nitrogen to prevent quenching phenomenon by oxygen. Injection pressure is 5.1MPa. Two dimensional spray fluorescence image of vapor phases was acquired to analyze spray behaviors and fuel distribution inside of cylinder. Four injection timings were set at BTDC $90^{\circ},\;80^{\circ},\;70^{\circ},\;and\;60^{\circ}$. With a fuel injection timing of BTDC $90^{\circ}$, fuel-rich mixture level in the center region was highest in a B-type piston. With a fuel injection timing of BTDC $60^{\circ}$, R-type piston was best. R-type piston shape was suitable under enhanced swirl ratio and late injection condition and B-type piston shape was right in a weak swirl ratio. It was found that the piston bowl shape affected the mixture stratification inside of cylinder.

  • PDF

설계 인자에 따른 연료 과농 가스발생기의 연소 안정성 특성 연구 (A Parametric Study on Combustion Stability Characteristics of Fuel-rich Gas Generators)

  • 안규복;문일윤;서성현;한영민;최환석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.171-176
    • /
    • 2006
  • 연료 과농 가스발생기에 대한 실험적 연구가 수행되었다. 연소 성능에 주요한 영향을 미치는 분사기 헤드에는 1.5의 리세스 수를 갖는 내부 혼합형 이중 스월 분사기 37개가 배치되었다. 본 논문에서는 연소실 길이, 직경, 그리고 교반링 등의 연소실 설계 변경에 따른 실물형 가스발생기의 연소 안정성 특성에 대하여 살펴보았다. 연소시험 결과 공진 주파수가 고주파 영역에서 생성됨에 따라 동압의 세기는 전반적으로 감소하였으나, 연소 불안정을 완전히 억제시키지는 못하는 것으로 나타났다.

  • PDF

수소 함유량에 따른 합성가스(H2/CO)-공기 예혼합 화염의 배출특성 연구 (A Study on the Emission Characteristics of Syngas(H2/CO)-Air Premixed Flame according to the H2 contents)

  • 정병규;최종민;이기만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.9-10
    • /
    • 2013
  • This study reports the results of an experimental investigation of emission and temperatures from the syngas-air premixed flame with a various mixture composition in the region of large equivalence ratios. The effects of hydrogen contents and equivalence ratios on the flame velocity, which reported before, and emission of syngas fuel are examined. In this study, representative syngas mixture compositions ($H_2:CO$) such as $H_2:CO=10:90$, 25:75, 50:50 and 75:25 and equivalence ratios from 0.5 to 5.0 have been conducted. The emissions of syngas fuel were measured by the high precision analyzer with enclosure configuration and the adiabatic temperatures are calculated by used Chemkin basis. The NOx emission level is coincided relatively well with the adiabatic temperature distributions in lean mixture conditions, but for rich mixture conditions NOx level was also increased again even though the adiabatic temperature decreases. Such an increasing characteristics in rich mixture conditions is coincided well with the tendency that rather the flue gas temperature increases.

  • PDF

고온에서의 예혼합 초소형 화염의 연소안정한계 연구 (Stability limits of premixed microflames at elevated temperatures)

  • 김기백;이경호;홍영택;권오채
    • 한국수소및신에너지학회논문집
    • /
    • 제17권2호
    • /
    • pp.158-165
    • /
    • 2006
  • In order to provide the database for designing microcombustors, the combustion characteristics of premixed methane and propane air microflames at normal and elevated temperatures and atmospheric pressure generated on a microtube were studied experimentally and computationally. The stability limits of premixed microflames and the propensity of the microflames near the stability limits were experimentally determined, while the structure of the microflame at the fuel-leanest limit was obtained using a two-dimensional CFD simulation with a reduced kinetic mechanism. For all the microflames, the stability limits were observed only in the fuel-rich region. Results also show substantial extension of stability limits with elevated temperature that is realistic condition for micro fuel processing and significant fuel dilution immediately near the tube exit due to a low Peclet number times Lewis number effect.

고압 분위기에서 CH4/O2 혼합기의 2단 다공체 내 부분산화 개질에 관한 실험적 연구 (Experimental Study on the Partial Oxidation Reforming of CH4/O2 Mixture in Two-Section Porous Media at High Pressure Conditions)

  • 곽영태;이대근;김승곤;고창복;박종호
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.73-74
    • /
    • 2015
  • Synthesis gas such as hydrogen and carbon monoxide was produced from $CH_4/oxygen$ mixture using insulated pressurized porous media combustor. Experimentally, two cylindrical SiC foams with the different pore density were piled up in a quartz tube and fully premixed mixture was supplied in the axial direction. After stabilizing fuel-rich flame at the interface of the two foams at several pressure conditions, mole fractions of synthesis gases were measured by gas chromatography. Heat recirculation through the inner foam structure could extend the flow velocity of stable region over the laminar burning velocity. As the pressure increased, the rich flammability limit, $H_2/CO$ ratio, and module M increased.

  • PDF

가시화법을 이용한 디젤 인젝터의 액적과 soot의 측정 기술 (Measurement technique for particle and soot of diesel injection by using a visualization method)

  • 정재우;박현종;이기형;이창식
    • 한국분무공학회지
    • /
    • 제6권2호
    • /
    • pp.22-28
    • /
    • 2001
  • Recently, many researches have been performed to improve the combustion and emission in a D.I.Diesel engine. Especially reduction of the soot formation in the combustion chamber is the essential to acquire the improvement of the emission performance. This emission of the diesel combustion is effected by the characteristics of air-fuel mixing. Therefore, the optical measurement technique such as LII and LIS were established in order to visualize the distribution of the soot and analyze the particle including spray in the combustion chamber. In this study, we developed the algorithm for calculating relative diameter and density of particle and applied this method to measure stimultaneously the distribution of soot and spray in a D.I. diesel engine. From this experiment we found that the soot is existed in the rich region of spray and generated caused by incapable air fuel mixture.

  • PDF

직분식 가솔린엔진에서 피스톤 형상이 연료 혼합기의 형성과 거동에 미치는 영향 . (Effect of Piston Cavity Geometry on Formation and Behavior of Fuel Mxture in a DI Gasoline Engine)

  • 김동욱;강정중;최경민;김덕줄
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.82-89
    • /
    • 2005
  • This study was performed to investigate the behavior and spatial distribution of fuel mixtures with different wall angle and diameter of piston cavity in a DI gasoline engine. The spatial distribution of fuel mixtures after impingement of the spray against a piston cavity is one of the most important. factors for the stratification of fuel mixture. Thus, it is informative to understand in detail the behavior and spatial distribution of fuel mixtures after impingement in the cavity. Two dimensional spray fluorescence images of liquid and vapor phase were acquired to analyze the behavior and distribution of fuel mixtures inside cylinder by exciplex fluorescence method. The exciplex system of fluorobenzene/DEMA in non-fluorescing base fuel of hexane was employed. Cavity wall angle was defined as an exterior angle of piston cavity. Wall angles of the piston cavity were set to 30, 60 and 90 degrees, respectively. The spray impinges on the cavity and diffuses along the cavity wall by its momentum. In the case of 30 degrees, the rolling-up moved from the impinging location to the round and fuel-rich mixture distributed at periphery of cylinder. In the case of 60 and 90 degrees, the rolling-up recircurated in the cavity and fuel mixtures concentrated at center region. High concentrated fuel vapor phase was observed in the cavity with 90 degrees. From. present study, it was found that the desirable cavity wall angle with cavity diameter for stratification in a Dl gasoline engine was demonstrated.

레이저 굴절법을 이용한 LPG와 가솔린 연료의 화염전파 특성에 관한 연구 (A Study on the Flame Propagation Characteristics for LPG and Gasoline fuels by Using Laser Deflection Method)

  • 이기형;이창식;강건용;강우
    • 대한기계학회논문집B
    • /
    • 제24권12호
    • /
    • pp.1608-1614
    • /
    • 2000
  • For the purpose of obtaining fundamental data which is needed to develope combustion system of LPG engine, we made constant volume chamber and analyzed flame propagation characteristics under different intial temperature, initial pressure and equivalence ratio which affect combustion of LPG. We investigated flame propagation speed of each fuel using laser deflection method and compared with the investigated flame propagation speed of each fuel using laser deflection method and compared with the results of image processing of flame. As a result, the maximum flame propagation speed was found at equivalence ratio 1.0 and 1.1 for LPG and gasoline, respectively. In the lean region, we can see that flame propagation speed of LPG surpasses that of gasoline. On the contrary, flame propagation speed of gasoline surpasses LPG in the rich region. As initial temperature and initial pressure were higher, flame propagation speed was faster. And, as equivalence ratio was larger and initial temperature was higher, combustion duration was shorter and maximum combustion pressure was higher.