• Title/Summary/Keyword: Fuel Quantity

Search Result 300, Processing Time 0.029 seconds

Characteristics of Plasma Blacks Used as an Electrode of Direct Formic Acid Fuel Cell

  • Park, Young-Sook;Choi, Jong-Ho;Han, Jong-Hee;Lim, Tae-Hoon;Beak, Young-Soon;Ju, Jeh-Beck;Shon, Tae-Won;Lee, Joong-Kee
    • Carbon letters
    • /
    • v.6 no.1
    • /
    • pp.41-46
    • /
    • 2005
  • Plasma carbon blacks of 20~30 nm diameter were synthesized by direct decomposition of natural gas using a hybrid plasma torch system with 50 kW direct current and 4 MHz of radio frequency. The insulating rector which inside diameter of 400 mm and length of 1500 mm, respectively was kept at 300~$400^{\circ}C$ during the preparation. The ultimate analysis of plasma carbon blacks reveals that the raw plasma carbon blacks contains a large quantity of volatile which is mainly consist of hydrogen. Therefore devolatilization of raw plasma carbon blacks were carried out at $900^{\circ}C$ for one hour under nitrogen atmosphere. The devolatilization leads to the decrease in electrical resistivity and surface oxygen functional groups of plasma carbon black significantly. In order to investigate the plasma carbon as a catalyst support, devolatilized plasma black at $900^{\circ}C$ (DPB) supported PtAu catalyst was synthesized by sodium boronhydride reduction method. Electrochemical measurements and direct formic acid fuel cell test indicated that catalytic activity of DPB supported PtAu catalyst for formic acid oxidation was similar to that of Vulcan XC-72 of commercial carbon black supported one.

  • PDF

Characteristics of Icing Phenomenon on Injector in a Liquid Phase LPG Injection SI Engine (대형 액상분사식 LPG엔진 인젝터의 아이싱 특성연구)

  • Kim, C.U.;Oh, S.M.;Kang, K.Y.
    • Journal of ILASS-Korea
    • /
    • v.8 no.2
    • /
    • pp.1-6
    • /
    • 2003
  • The liquid phase LPG injection (LPLI) system (the third generation technology) has been considered as one of the next generation fuel supply systems for LPG vehicles, since it has a very strong potential to accomplish the higher power, higher efficiency, and lower emission characteristics than the mixer type(the second generation technology) fuel supply system However. when a liquid LPG fuel is injected into the inlet duct of an engine, a large quantity of heat is extracted due to evaporation of fuel. This leads to freezing of the moisture in the air around the outlet of a nozzle, which is called icing phenomenon. It may cause damage to the outlet nozzle of an injector or inlet valve seat. In this work, the experimental investigation of the icing phenomenon was carried out The results showed that the icing phenomenon and process were mainly affected by humidity of inlet air instead of air temperature in the inlet duel. Also, it was observed that the total ice formed around the nozzle weighs at about $150mg{\sim}260mg$ after injection for ten minutes. And some fuel species were found in the ice attached at the front side of a nozzle, while frozen ice attached at the back of a nozzle was mostly' consisted of moisture of inlet air. Therefore, some frozen ice deposit. detached from front nozzle of an injector, may cause a problem of unfavorable air fuel ratio control in the small LPLI engine.

  • PDF

PILOT INJECTION OF DME FOR IGNITION OF NATURAL GAS AT DUAL FUEL ENGINE-LIKE CONDITIONS

  • MORSY M. H.;AHN D. H.;CHUNG S. H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • The ignition delay of a dual fuel system has been numerically investigated by adopting a constant volume chamber as a model problem simulating diesel engine relevant conditions. A detailed chemical kinetic mechanism, consisting of 28 species and 135 elementary reactions, of dimethyl ether (DME) with methane ($CH_{4}$) sub-mechanism has been used in conjunction with the multi-dimensional reactive flow KIVA-3V code to simulate the autoignition process. The start of ignition was defined as the moment when the maximum temperature in the combustion vessel reached to 1900 K with which a best agreement with existing experiment was achieved. Ignition delays of liquid DME injected into air at various high pressures and temperatures compared well with the existing experimental results in a combustion bomb. When a small quantity of liquid DME was injected into premixtures of $CH_{4}$/air, the ignition delay times of the dual fuel system are longer than that observed with DME only, especially at higher initial temperatures. The variation in the ignition delay between DME only and dual fuel case tend to be constant for lower initial temperatures. It was also found that the predicted values of the ignition delay in dual fuel operation are dependent on the concentration of the gaseous $CH_{4}$ in the chamber charge and less dependent on the injected mass of DME. Temperature and equivalence ratio contours of the combustion process showed that the ignition commonly starts in the boundary at which near stoichiometric mixtures could exists. Parametric studies are also conducted to show the effect of additive such as hydrogen peroxide in the ignition delay. Apart from accurate predictions of ignition delay, the coupling between multi-dimensional flow and multi-step chemistry is essential to reveal detailed features of the ignition process.

The Effects of Various Swirl Flows on Pulverized Petroleum Coke Combustion (미분 석유코크스연소기에서 스월강도변화가 연소과정에 미치는 영향)

  • Cha, Chun Loon;Lee, Ho Yeon;Hwang, Sang Soon
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.297-299
    • /
    • 2014
  • Petroleum coke has high heating value and low price. Due to the steadily increasing demand for heavy oil processing, the production volume of petroleum coke tends to be expanded. The high availability and low price of petroleum coke have been strongly considered as candidate fuel for power generation facilities. However the high carbon content, high sulfur content and nitrogen content of petroleum fuel are known to produce relatively large quantity of CO2, high NOx and SO2 emission. In this work, a series of numerical simulations have been carried out in order to investigate the effects of swirl flow intensity on combustion furnace, which is most important operating condition. Results show that the temperature distribution was spatially uniform at about 1600K but high temperature region are located quite differently depending on swirl number. In addition, numerical temperature data was compared with experimental temperature data and its temperature difference shows less than 10%. On the other hand, discrepancy between numerical and experimental emission data were slightly large with necessities of improved emission model.

  • PDF

Combustion Characteristics of Common Rail System by Using a Heavy Duty Transparent Engine (Common Rail을 이용한 대형 디젤 가시화엔진에서의 연소특성)

  • Kim, Y.M.;Lee, J.H.;Kim, S.H.;Lee, W.G.;Hong, C.H.;Choi, B.C.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.896-902
    • /
    • 2001
  • To meet strict emission regulation while improving engine performances, common rail injection system which is suitable for electronic control, and capable of controlling injection quantity, timing, rate and pressure individually as well as realizing high pressure has been developed. At present study, a 8L DI diesel engine was converted to a single-cylinder experimental engine allowing optical access through an extended piston and a prototype of common rail injector in progress was applied to the engine. The combustion characteristics of the engine were analysed by using direct images and characteristics of the injector were analysed. We can not say that the results are always the same to general common rail injection system but that they are just characteristics of specific prototype injector.

  • PDF

Fuel Economy and Emission Characteristics Evaluation by CVS-75 Mode Test and RDE(Real-road Driving Emissions) Test (CVS-75 모드 시험과 실도로 주행 시험을 통한 배출가스 및 연비 성능 평가)

  • Kang, Eunjeong;Um, Junsik;Seo, Youngho
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.2
    • /
    • pp.67-70
    • /
    • 2014
  • Recently EU has been recognized that there is a difference of emission quantity between emission certification test mode and real-road driving test. Accordingly the European Commission is currently preparing to require real-road testing as part of the passenger car type-approval process in the EU. vehicle manufacturers from 2017 are expected to test new vehicles not only under laboratory conditions but also on the real-road, using PEMS equipment. Therefore the purpose of this study is to analyze the emission and Fuel Economy of CVS-75 mode test using chassis dynamometer and RDE test using PEMS equipment by PHEV passenger car.

Preparation of Energetic Metal Particles and Their Stabilization (에너제틱 금속입자 제조 및 안정화 기술)

  • Lee, Hye Moon;Kim, Kyung Tae;Yang, Sangsun;Yu, Ji-Hun;Kim, Yong-Jin
    • Particle and aerosol research
    • /
    • v.9 no.3
    • /
    • pp.173-185
    • /
    • 2013
  • Oxidations of metal generate large quantity of thermal and light energies but no toxic pollutants, so that metals with high calorific values, such as beryllium, boron, aluminum, magnesium, and lithium, are possible to be used as clean fuels instead of fossil fuels. However, they are so explosive due to very high oxidation rates that they should be stabilized by their surface passivation with oxides, organics and inorganics. For reasonable use of energetic metal particles as solid fuel, therefore, some detail information, such as thermal properties, preparation and passivation methods, and application area, of the energetic metals is introduced in this manuscript.

A Study on the Mixture Formation in a Fuel Injection System (연료분사장치의 혼합기 형성에 관한 연구)

  • ;;;Lee, K. H.;Seo, Y. H.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.10
    • /
    • pp.2690-2698
    • /
    • 1995
  • Fuel atomization and mixture formation in an gasoline engine has influence on the engine performance and pollutant emission. The throttle valve installed in an intake system plays a greater role in control of mixture quantity in accordance with engine drive condition. In this study, the characteristics of secondary atomization developed at the downstream of the valves were observed using an image processing method. Two major kinds of valves, solid and perforated ones, are chosen in order to compare the valve performance with the experimental parameters of air flow rate, valve opening angle, and valve shapes. For the perforated valve, we can obtain the relatively small sized droplets, and nearly uniformed and dense distributed sprays with low loss coefficient than for the solid valve.

Reconfiguration of Redundant Thrusters by Allocation Method

  • Jin, Jae-Hyun;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.76-83
    • /
    • 2005
  • Thrusters are important actuators where air is rare. Since the maintenance or replacement of thrusters is not easy in such an environment, a thrusting system must be highly reliable. Redundant thrusters are used to meet the reliability requirement. In this paper, a reconfiguration problem for those redundant thrusters is discussed, especially the management or distribution logic of redundant thrusters is focused on. The logic has to be changed if faults occur at thrusters. Reconfiguration is to change the distribution logic to accommodate thrusters' faults. The authors propose a reconfiguration algorithm based on the linear programming method. The authors define the reconfiguration problem as an optimization problem. The performance index is a quantity related with total fuel consumption by thrusters. This algorithm can accommodate multiple faults. Numerical examples are given to show the advantage of the proposed algorithm over existing methods.

Risk Analysis of Explosion in Building by Fuel Gas

  • Jo, Young-Do;Park, Kyo-Shik;Ko, Jae Wook
    • Corrosion Science and Technology
    • /
    • v.3 no.6
    • /
    • pp.257-261
    • /
    • 2004
  • Leaking of fuel gas in a building creates flammable atmosphere and gives rise to explosion. Observations from accidents suggest that some explosions are caused by quantity of gas significantly less than the lower explosion limit amount required to fill the whole confined space, which might be attributed to inhomogeneous mixing of the leaked gas. The minimum amount of leaked gas for explosion is highly dependent on the degree of mixing in the building. This paper proposes a method for estimating minimum amount of flammable gas for explosion assuming Gaussian distribution of flammable gas.