• Title/Summary/Keyword: Fuel Performance

Search Result 4,151, Processing Time 0.027 seconds

Performance Simulation for the Variation of Fuel Injection Nozzle Configurations in Medium Speed Diesel Engine (중형 디젤 엔진의 연료분사노즐 형상에 따른 성능 해석 연구)

  • Kim, Ki-Doo;Youn, Wook-Hyun;Kim, Byong-Seok;Ha, Ji-Soo;Ahn, Kwang-Hean;Kim, Ju-Tae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.662-668
    • /
    • 2006
  • The effects of fuel injection nozzle hole on the NOx emission and fuel oil consumption of medium speed diesel engine HYUNDAI HiMSEN 6H21/32 engine are investigated by engine performance simulation. The results of performance simulation are verified by experimental results of NOx omission fuel oil consumption, cylinder pressure, and heat release rate according to the variation of the number of fuel injection nozzle hole and engine load. The performance simulations are also carried out to optimize the fuel injection nozzle of 6H21/32 engine in respect to the NOx emission and fuel oil consumption. The engine performance measurements are performed to verify the results of performance simulation and to investigate the effects of fuel injection nozzle on engine performance. The results of measurement indicate that significant NOx reduction can be achieved with minimum deterioration in fuel oil consumption by optimizing the geometry of fuel injection nozzle on 6H21/32 engine.

IRRADIATION TEST OF MOX FUEL IN THE HALDEN REACTOR AND THE ANALYSIS OF MEASURED DATA WITH THE FUEL PERFORMANCE CODE COSMOS

  • WIESENACK WOLFGANG;LEE BYUNG-HO;SOHN DONG-SEONG
    • Nuclear Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.317-326
    • /
    • 2005
  • The burning-out of excess plutonium from the reprocessing of spent nuclear fuel and from the dismantlement of nuclear weapons is recently emphasized due to the difficulties in securing the final repository for the spent fuel and the necessity to consume the ex-weapons plutonium. An irradiation test in the Halden reactor was launched by the OECD Halden Reactor Project (HRP) to investigate the in-pile behavior of plutonium-embedded fuel as a form of mixed oxide (MOX) and of inert matrix fuel (IMF). The first cycle of irradiation was successfully accomplished with good integrity of test fuel rods and without any undesirable fault of instrumentations. The test results revealed that the MOX fuel is more stable under irradiation environments than IMF. In addition, MOX fuel shows lower thermal resistance due to its better thermal conductivity than IMF. The on-line measured in-pile performance data of attrition milled MOX fuel are used in the analysis of the in-pile performance of the fuel with the fuel performance code, COSMOS. The COSMOS code has been developed for the analysis of MOX fuel as well as $UO_2$ fuel up to high burnup and showed good capability to analyze the in-reactor behavior of MOX fuel even with different instrumentation.

Impurities in the methanol fuel on the performance of direct methanol fuel cell (직접메탄올 연료전지의 성능에 미치는 메탄올 연료의 불순물)

  • Peck, Dong-Hyun;Lee, Jae-Hyuk;Park, Young-Chul;Lim, Seongyop;Kim, Sang-Kyung;Jung, Doo-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.124.1-124.1
    • /
    • 2010
  • The impurities in the methanol fuel that is used for direct methanol fuel cell (DMFC) could greatly affect the performance of membrane electrode assemblies (MEA). The most common impurities in the commercial methanol fuel are mainly ethanol, acetone, acetaldehyde, or ammonia. In this study, the effect of impurities in methanol fuel was investigated on the performance of MEA. The MEA for DMFC were prepared using a semi-automatic bar-coating machine, which can prepare the catalyst layer with uniform thickness for MEA. As a result, a single cell supplied with one of the 6 different kinds of methanol fuels showed a significant degradation of the fuel cell performance. The most common impurities in the commercial methanol fuel is mainly ethanol, acetone, acetaldehyde, or ammonia. The effects of the kind and the concentration of impurities in the methanol fuels were investigated on the performance of MEA for DMFC. We will propose the optimum compositions and limit concentration of impurities in methanol fuel for high performance of MEA for DMFC.

  • PDF

Effect of central hole on fuel temperature distribution

  • Yarmohammadi, Mehdi;Rahgoshay, Mohammad;Shirani, Amir Saied
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1629-1635
    • /
    • 2017
  • Reliable prediction of nuclear fuel rod behavior of nuclear power reactors constitutes a basic demand for steady-state calculations, design purposes, and fuel performance assessment. Perfect design of fuel rods as the first barrier against fission product release is very important. Simulation of fuel rod performance with a code or software is one of the fuel rod design steps. In this study, a software program called MARCODE is developed in MATLAB environment that can analyze the temperature distribution, gap conductance value, and fuel and clad displacement in both solid and annular fuel rods. With a comparison of the maximum fuel temperature, fuel average temperature, fuel surface temperature, and gap conductance in solid and annular fuel, the effects of a central hole on the fuel temperature distribution are investigated.

DEVELOPMENT OF FUEL CELL HYBRID ELECTRIC VEHICLE PERFORMANCE SIMULATOR

  • Park, C.;Oh, K.;Kim, D.;Kim, H.
    • International Journal of Automotive Technology
    • /
    • v.5 no.4
    • /
    • pp.287-295
    • /
    • 2004
  • A performance simulator for the fuel cell hybrid electric vehicle (FCHEV) is developed to evaluate the potentials of hybridization for fuel cell electric vehicle. Dynamic models of FCHEV's electric powertrain components such as fuel cell stack, battery, traction motor, DC/DC converter, etc. are obtained by modular approach using MATLAB SIMULINK. In addition, a thermodynamic model of the fuel cell is introduced using bondgraph to investigate the temperature effect on the vehicle performance. It is found from the simulation results that the hybridization of fuel cell electric vehicle (FCEV) provides better hydrogen fuel economy especially in the city driving owing to the braking energy recuperation and relatively high efficiency operation of the fuel cell. It is also found from the thermodynamic simulation of the FCEV that the fuel economy and acceleration performance are affected by the temperature due to the relatively low efficiency and reduced output power of the fuel cell stack at low temperature.

Consideration of reversed Boudouard reaction in solid oxide direct carbon fuel cell (SO-DCFC)

  • Vahc, Zuh Youn;Yi, Sung Chul
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.514-518
    • /
    • 2018
  • The direct carbon fuel cell (DCFC) has attracted researcher's attention recently, due to its high conversion efficiency and its abundant fuel, carbon. A DCFC mathematical model has developed in two-dimensional, lab-scale, and considers Boudouard reaction and carbon monoxide (CO) oxidation. The model simulates the CO production by Boudouard reaction and additional electron production by CO oxidation. The Boudouard equilibrium strongly depends on operating temperature and affects the amount of produced CO and consequentially affects the overall fuel cell performance. Two different operating temperatures (973 K, 1023 K) has been calculated to discover the CO production by Boudouard reaction and overall fuel cell performance. Moreover, anode thickness of the cell has been considered to find out the influence of the Boudouard reaction zone in fuel cell performance. It was found that in high temperature operating DCFC modeling, the Boudouard reaction cannot be neglected and has a vital role in the overall fuel cell performance.

Validation of the fuel rod performance analysis code FRIPAC

  • Deng, Yong-Jun;Wei, Jun;Wang, Yang;Zhang, Bin
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1596-1609
    • /
    • 2019
  • The fuel rod performance has great importance for the safety and economy of an operating reactor. The fuel rod performance analysis code, which considers the thermal-mechanical response and irradiation effects of fuel rod, is usually developed in order to predict fuel rod performance accurately. The FRIPAC (${\underline{F}}uel$ ${\underline{R}}od$ ${\underline{I}}ntegral$ ${\underline{P}}erformance$ ${\underline{A}}nalysis$ ${\underline{C}}ode$) is such a fuel rod performance analysis code that has been developed recently by China Nuclear Power Technology Research Institute Co. Ltd. The code aims at the computational simulation of the Pressurized Water Reactor fuel rod behavior for both steady-state and power ramp condition. A brief overview of FRIPAC is presented including the computational framework and the main behavioral models. Validation of the code is also presented and it focuses on the fuel rod behavior including fuel center temperature, fission gas release, rod internal pressure/internal void volume, cladding outer diameter and cladding corrosion thickness. The validation is based on experimental data from several international projects. The validation results indicate that FRIPAC is an accurate and reliable fuel rod performance analysis code because of the satisfactory comparison results between the experimental measurements and the code predictions.

Enhanced diffusion by using pulsating flow (왕복유동을 이용한 확산증대 효과에 대한 연구)

  • Hwang, Yong-Sheen;Lee, Dae-Young;Kim, Seo-Young;Choi, Hoon;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.538-541
    • /
    • 2008
  • This study considers the feasibility of the concentration control of the feul and air by oscillating flow in the channel of Fuel Cells. Fuel Cell Stack performance is largely influenced by the fuel and air concentration. If the fuel and air concentration is lower than stoichiometry 1.25 of the fuel and 2.5 of the air, its performance deteriorates seriously because of the fuel and air starvation. In this respect the optimization of the fuel and air concentration is crucially important to maximize fuel cell stack performance. In this work, the effects of oscillating actuation are studied to control the concentration. Two important nondimensional parameters are introduced, each of which represents either the oscillating frequency or the oscillating amplitude. It is shown how these factors affect the stack performance and the efficiency of the fuel cell stack stack.

  • PDF

Analytical Study on the Oscillating Flow Effect in a Anode Channel of Direct Methanol Fuel Cells (연료극 왕복유동이 직접 메탄올 연료전지에 미치는 영향에 대한 해석적 연구)

  • Hwang, Yong-Sheen;Lee, Dae-Young;Kim, Seo-Young;Choi, Hoon;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.27-30
    • /
    • 2007
  • This study considers the feasibility of the concentration control of the methanol solution by oscillating flow in the anode channel of passive type Direct Methanol Fuel Cells(DMFC). DMFC stack performance is largely influenced by the fuel concentration. If the fuel concentration is either lower than 0.5M or more than 2M, its performance deteriorates seriously because of the fuel starvation or the fuel crossover. In this respect the optimization of the fuel concentration is crucially important to maximize the DMFC stack performance. In this work, the effects of oscillating actuation in the fuel supply are studied to control the fuel concentration. Two important nondimensional parameters are introduced, each of which represents either the oscillating frequency or the oscillating amplitude. It is shown how these factors affect the stack performance and the efficiency of the DMFC stack.

  • PDF

Sensitivity Analysis of Fabrication Parameters for Dry Process Fuel Performance Using Monte Carlo Simulations

  • Park Chang Je;Song Kee Chan;Yang Myung Seung
    • Nuclear Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.338-345
    • /
    • 2004
  • This study examines the sensitivity of several fabrication parameters for dry process fuel, using a random sampling technique. The in-pile performance of dry process fuel with irradiation was calculated by a modified ELESTRES code, which is the CANDU fuel performance code system. The performance of the fuel rod was then analyzed using a Monte Carlo simulation to obtain the uncertainty of the major outputs, such as the fuel centerline temperature, the fission gas pressure, and the plastic strain. It was proved by statistical analysis that for both the dry process fuel and the $UO_2$ fuel, pellet density is one of the most sensitive parameters, but as for the fission gas pressure, the density of the $UO_2$ fuel exhibits insensitive behavior compared to that of the dry process fuel. The grain size of the dry process fuel is insensitive to the fission gas pressure, while the grain size of the $UO_2$ fuel is correlative to the fission gas pressure. From the calculation with a typical CANDU reactor power envelop, the centerline temperature, fission gas pressure, and plastic strain of the dry process fuel are higher than those of the $UO_2$ fuel.