Consideration of reversed Boudouard reaction in solid oxide direct carbon fuel cell (SO-DCFC)

  • Vahc, Zuh Youn (Department of Fuel Cell and Hydrogen Technology, Hanyang University) ;
  • Yi, Sung Chul (Department of Fuel Cell and Hydrogen Technology, Hanyang University)
  • Published : 2018.12.01

Abstract

The direct carbon fuel cell (DCFC) has attracted researcher's attention recently, due to its high conversion efficiency and its abundant fuel, carbon. A DCFC mathematical model has developed in two-dimensional, lab-scale, and considers Boudouard reaction and carbon monoxide (CO) oxidation. The model simulates the CO production by Boudouard reaction and additional electron production by CO oxidation. The Boudouard equilibrium strongly depends on operating temperature and affects the amount of produced CO and consequentially affects the overall fuel cell performance. Two different operating temperatures (973 K, 1023 K) has been calculated to discover the CO production by Boudouard reaction and overall fuel cell performance. Moreover, anode thickness of the cell has been considered to find out the influence of the Boudouard reaction zone in fuel cell performance. It was found that in high temperature operating DCFC modeling, the Boudouard reaction cannot be neglected and has a vital role in the overall fuel cell performance.

Keywords

Acknowledgement

Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP)

References

  1. J. Katzer, in "The future of coal" (Massachusetts Institute of Technology, 2007) p. 10.
  2. C.L. Brierley, in "COAL: Research and Development to Support National Energy Policy" (NRC Report, June 2007) p. 2.
  3. S. Giddey, S.P.S. Badwal, A. Kulkarni, C. Munnings, Prog. Energy. Combust. Sci. 38 (2012) 360-399. https://doi.org/10.1016/j.pecs.2012.01.003
  4. T.M. Gur, Chem. Rev. 113 (2013) 6179-6206. https://doi.org/10.1021/cr400072b
  5. A.C. Rady, S. Giddey, A. Kulkarni, S.P.S. Badwal, S. Bhattacharya, Fuel 180 (2016) 270-277. https://doi.org/10.1016/j.fuel.2016.04.047
  6. J. Mizusaki, J. Tagawa, Solid State Ionics (1992) 126-134.
  7. G.O. Lauvstad, R. Tunold, S. Sunde, J. Electrochem. Soc. 149[12] (2002) E497-505. https://doi.org/10.1149/1.1518484
  8. V. Yurkiv, D. Starukhin, J.R. Volpp. W.G. Bessler, J. Electrochem. Soc. 158 (2011) B5-10. https://doi.org/10.1149/1.3505296
  9. C.J. Moyer, N.P. Sullivan, H. Zhu, R.J. Kee, J. Electrochem. Soc. 158 (2011) B117-131. https://doi.org/10.1149/1.3518413
  10. X. Zhao, Q. Yao, S. Ki, N. Cai, J. Power Sources 185 (2008) 104-111. https://doi.org/10.1016/j.jpowsour.2008.06.061
  11. S.H. Chan, C.F. Low, O.L. Ding, J. Power Sources 103 (2002) 188-200. https://doi.org/10.1016/S0378-7753(01)00842-4
  12. W.H.A. Peelen, M. Olivry, S.F. Au, J.D. Fehribach, K. Hemmes, J. Appl. Electrochem. 30 (2000) 1389-1395. https://doi.org/10.1023/A:1026586915244
  13. H. Xu, B. Chen, J. Liu, M. Ni, Applied Energy. 178 (2016) 353-362. https://doi.org/10.1016/j.apenergy.2016.06.064
  14. J.R. Selman, H.C. Maru, in "Advances in molten salt chemistry" (Plenum Press, 1981) p. 176.
  15. N. Nakagawa, M. Ishida, Ind. Eng. Chem. Res. 27 (1988) 1181-1185. https://doi.org/10.1021/ie00079a016
  16. M. Brown, S. Primdahl, M. Mogensen, J. Electrochem. Soc. 147 (2000) 475-485. https://doi.org/10.1149/1.1393220
  17. Y. Matsuzaki, I. Yasuda, J. Electrochem. Soc. 147 (2000) 1630-1635. https://doi.org/10.1149/1.1393409
  18. Y. Jiang, A.V. Virkar, J. Electrochem. Soc. 150 (2003) A942-951. https://doi.org/10.1149/1.1579480
  19. O. Costa-Nunes, R.J. Gorte, J.M. Vohs, J. Power Sources. 140 (2005) 241-249.
  20. Y. Tang, J. Liu, Int. J. Hydrogen. Energy. 35 (2010) 11188-11193. https://doi.org/10.1016/j.ijhydene.2010.07.068
  21. C.C. Chen, R. Maruyama, P.H. Hsieh, J.R. Selman, J. Electrochem. Soc. 23 (2010) 227-239.
  22. E. Mon, M.R. Amundson, Ind. Eng. Chem. Fundam. 17 (1978) 313-321. https://doi.org/10.1021/i160068a017
  23. A. Elleuch, A. Boussetta, K. Halouani, J. Electroanal. Chem. 668 (2012) 99-106. https://doi.org/10.1016/j.jelechem.2012.01.010
  24. A. Elleuch, J. Yu, A. Boussetta, K. Halouani, Y. Li, Int. J. Hydrogen. Energy 38 (2013) 8514-8523. https://doi.org/10.1016/j.ijhydene.2012.11.070