• Title/Summary/Keyword: Fuel Nozzle

Search Result 625, Processing Time 0.023 seconds

Mixing Effect by Tone-Excitation In Round Jet Diffusion Flame (원형분류확산화염에서의 음파가진에 의한 혼합효과)

  • Kim, Tae Kwon;Park, Jeong;Shin, Hyun Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.6
    • /
    • pp.795-801
    • /
    • 1999
  • An experimental investigation has been conducted with the objective of studying the mixing mechanism near the nozzle exit in a tone-excited jet diffusion flame. The fuel jet was pulsed by means of a loudspeaker-driven cavity. The excitation frequencies were chosen for the two cases of the non-resonant and resonant frequency identified as a fuel tube resonance due to acoustic excitation. The effect of tone-excitations on mixing pattern near the nozzle exit and flame was visualized using various techniques, including schlieren photograph and laser light scattering photograph from $TiO_2$ seed particles. In order to clarify the details of the flame feature observed by visualization methods, hotwire measurements have been made. Excitation at the resonant frequency makes strong mixing near the nozzle. In this case, the fuel jet flow in the vicinity of nozzle exit breaks up into disturbed fuel parcels. This phenomena affects greatly the combustion characteristics of the tone excited jet and presumably occurs by flow separation from the wall inside the fuel nozzle. As a result, in the resonant frequency the flame length reduces greatly.

An Investigation on the Spray Characteristics of DME with Variation of Nozzle Holes Diameter using the Common Rail Fuel Injection System (인젝터 노즐 홀 직경의 변화에 따른 DME 커먼레일 연료 분사 시스템의 분무 특성에 관한 연구 II)

  • Lee, Sejun;Lim, Ocktaeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.1-7
    • /
    • 2013
  • DME spray characteristics were investigated about varied ambient pressure and fuel injection pressure using the DME common rail fuel injection system when the nozzle holes diameter is varied. The common rail fuel injection system with DME cooling system was used since DME has properties of compressibility and vaporization in atmospheric temperature. The fuel injection quantity and spray characteristics were measured. The spray analysis parameters were spray shape, penetration length, and spray angle at six nozzle holes. Three types of injector were used, the nozzle holes diameter were 0.166 mm (Injector 1), 0.250 mm (Injector 2), and 0.250 mm with enlargement of orifice hole from 0.6 mm to 1.0 mm (Injector 3). The fuel injection pressure was varied by 5MPa from 35 to 70MPa when the ambient pressure was varied 0, 2.5, and 5MPa. When using Injector 3 in comparison to the others, the DME injection quantity was increased 1.69 ~ 2.02 times. Through this, it had the similar low heat value with diesel which was injected Injector 1. Among three types of injector, Injector 3 had the fastest development velocity of penetration length. In case of spray angle, Injector 2 had the largest spray angle. Through these results, only the way enlargement the nozzle holes diameter is not the solution of DME low heat value problem.

Effects of Various Densities and Velocities to Gaseous Hydrocarbon Fuel on Near Nozzle Flow Field in Laminar Coflow Diffusion Flames

  • Ngorn, Thou;Jang, Sehyun;Yun, Seok Hun;Park, Seol Hyeon;Lee, Joo Hee;Choi, Jae Hyuk
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.291-293
    • /
    • 2015
  • The experimental study on flow characteristic in various laminar coflow diffusion flame has been conducted with a particular focus on the buoyancy force exerted from gaseous hydrocarbon fuels. Methane ($CH_4$), Ethylene ($C_2H_4$) and n-Butane ($C_4H_{10}$) were used as fuels. Coflow burner and Schlieren technique were used to observe the fuel flow field near nozzle exit and flow characteristics in flames. The result showed that the vortices in n-Butane with density heavier than air were appeared near the nozzle exit with the strong negative buoyancy on the fuel stream. As Reynolds number increases by the control of velocity, the vortices were greater and the vortices tips were moved up from the nozzle exit. In addition, it can be found that the heated nozzle can affect to the flow fields of fuel stream near the nozzle exit.

  • PDF

Effect of Lean-rich Fuel Staging to the Multiple Jet Flames on the Blowout Velocity (과농-희박연료가 교차로 공급되는 상호작용 화염의 화염날림에 관한 연구)

  • Lee, Byeong-Jun;Park, Kyung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.1
    • /
    • pp.7-14
    • /
    • 2008
  • It has been reported that partially premixed interacting flame could be sustained till sonic exit velocities if eight small nozzles are arranged optimally and one nozzle on the center is fed small amount of fuel. But the equivalence ratios in this experiments were 20-60. In this research, experiments were conducted to know the effects of lean-rich staging in multiple jet flames on the blowout velocity. The fuel mole tractions in the fuel-air mixture, the nozzle exit velocity and the diameter between adjacent nozzles were alternatively changed. When the lower mole fraction fuel was fed to the nozzles located near the center and small amount of fuel to the center nozzle, flame was not extinguished even at the nozzle exit velocity of 200m/s. Also the interacting flame could be sustained till that velocity when four small size nozzles for lean mixture were located within the arrangement of four nozzles for rich mixture and configured optimally.

A Study on the Optimization of Fuel Injection Nozzle Geometry for Reducing NOx Emission in a Large Diesel Engine (대형 디젤 엔진의 연료 분사 노즐 형상이 NOx 발생량 및 연료소비율에 미치는 영향 연구)

  • Kim Ki-Doo;Ha Ji-Soo;Yoon Wook-Hyeon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1123-1130
    • /
    • 2004
  • Numerical simulations have been carried out to investigate the effect of nozzle hole geometry on the combustion characteristics of the large diesel engine. 6S90MC-C. Spray and combustion phenomena were examined numerically using FIRE code. Wane breakup and Zeldovich models were adopted to describe the atomization characteristics and NOx formation processes. Predictions on the cylinder peak pressure and NOx emission were first verified with the experimental data to confirm the reliability of numerical calculations. The comparison results showed good agreements within the range of 0.64% and 4.6% respectively. Finally, the effects of fuel spray angle and diameter on the engine performance were investigated numerically to find the optimum nozzle hole geometry considering fuel consumption, NOx emission and heat flux of the combustion chamber wall. It was concluded that the combustion gas recirculation in cylinder by changing fuel injection direction is an effective method to reduce NOx emission by about 10% with increasing fuel oil consumption, 1.4% in a large diesel engine.

Stability Enhancement by the Interaction of Diffusion Flames (다수 비예혼합 화염의 안정화 특성)

  • Kim, Jin-Sun;Lee, Byeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1420-1426
    • /
    • 2003
  • The stability of turbulent nonpremixed interacting flames is investigated in terms of nozzle configuration shapes and kind of fuels. Four nozzle arrangements - cross 5, matrix 8, matrix 9 and circle 8 nozzles - are used in the experiment. There are many parameters affecting flame stability in multi-nozzle flames such as nozzle separation distance, fuel flowrates and nozzle configuration etc. Key factors to enhance blowout limit are the nozzle configuration and the existence of center nozzle. Even nozzle exit velocity equal 204 m/s, flame is not extinguished when there is not a center nozzle and s/d=15.3∼27.6 in matrix-8 and circular-8 configurations. At these conditions, recirculation of burnt gas is related with stability augmentation. Fuel mole fraction measurements using laser induced fluorescence reveal lifted flame base is not located at the stoichiometric contour.

Measurements of Spray Characteristics According to Nozzle Property in Dual Fuel Engine with a Mechanical Fuel Pump (기계식 연료펌프를 사용하는 혼소엔진에서 노즐특성에 따른 경유 분사특성 측정)

  • Cho, S.H.;Yoo, S.H.;Lee, B.H.;Kim, D.H.;Lee, D.Y.
    • Journal of ILASS-Korea
    • /
    • v.17 no.2
    • /
    • pp.94-99
    • /
    • 2012
  • The characteristics of spray behavior and injected amount were studied with two types of nozzles for using in a compression ignition engine with dual fuel technology for construction machines. A penetration length of spray tends to shorten due to a decrease of injected amount of a diesel fuel with dual fuel engine application. In order to ignite the gaseous fuel premixed with air during intake process, a diesel fuel, which was compression ignited, needs to penetrate somehow similar depth compared with the case of a diesel fuel-only-injection. In this work, a nozzle with reduced hole diameter and increased number of holes was tested and demonstrated that, compared to diesel 100% case, its penetration lengths are comparable to 74% and 79%, respectively, of those of 100% and 50% supply of a diesel fuel with the baseline nozzle that has four holes and 30.4% increased diameter. This will presumably enhancement the combustion in a dual fuel engine. A design suggestion was also made in this work to achieve similar penetration length of spray with diesel 100% case to prevent combustion from being deteriorated in a dual fuel engine.

A Study on the Characteristics of Fuel Spray (燃料噴霧特性 에 관한 硏究)

  • 진호근;이창식;서정일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.3
    • /
    • pp.256-260
    • /
    • 1982
  • This paper presents the characteristics of fuel spray in a diesel engine. In this paper, in order to obtain spray droplet size in a diesel engine, water was injected into the cylinder at room temperature and pressure by injection system. Spray droplet size was measured by liquid immersion technique with a lubricant used as an immersion liquid for spray water from injection nozzle. In this experiment, single hole type throttle nozzle are used at same operating conditions, which included opening pressure of nozzle, fuel delivery, and injection speed. Sauter mean diameter decrease with the increase of injection pressure and decrease in injection nozzle diameter. The rate of spray penetration increased with increasing injection pressure and diameter of injection nozzle at the constant spray conditions.

A Study on the Reduction of $NO_x$ Emission from Dual Fuel Engine for Co-generation System (열병합발적용 Dual Fuel Engine의 질소산화물 배출저감에 관한 연구)

  • 정일래;김용술;심용식
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.31-40
    • /
    • 1991
  • This study shows the correlation between $NO_x$ emission in the exhaust gas and various operation factors of dual fuel engine for Co-generation system. General tendency was shown that the thermal efficiency was lowered by the change of operation factors. However these were not confirmed on this experiment. Increasing T4 temperature (exhaust gas temperature at turbo-charger inlet) reduces $NO_x$ emission rate. The higher T4 temperature requires lower excess air as the excess air ratio is controlled by T4 temperature on gas mode operation. Another tendency was that $NO_x$ emission rate is reduced in case of increasing boost air temperature, quantity of pilot oil or bypassing flue gas through the exhaust gas boiler. The diameter of the fuel injection nozzle was changed smaller than design value and the injection timing was readjusted. Thus $NO_x$ emission rate could be reduced as retarding injection timing and changing hole diameter of fuel injection nozzle, however maxium engine out-put was decreased by changing fuel nozzle on the diesel mode operation.

  • PDF

A Study on the Injection Characteristics of Swirl Nozzle Injector in Common-rail System for High Pressure Fuel Injection (커먼 레일 시스템 고압 연료 분사용 스월 노즐 인젝터의 분사 특성에 관한 연구)

  • Sin, Yunsub;Lee, Geesoo;Kim, Hyunchul;Kwak, Sangshin;Shin, Suk Shin;Suh, Hyun Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.89-95
    • /
    • 2013
  • In this work, the evaluation of swirl nozzle injector performance was conducted by investigating effective area ($A_{eff}$), injection mass ($m_{inj}$), injection rate ($Q_{inj}$), and injection delay ($t_{delay}$) under various test conditions. To achieve these, fuel injection analysis system which was composed of fuel supply system, injection system, and control system was installed. At the same time, the swirl nozzle that had 12 orifice hole with $120^{\circ}$ injection angle was used in this work. It was revealed that the difference of injection mass ($m_{inj}$) between base and swirl nozzle injector increased as the injection pressure ($P_{inj}$) and energizing duration ($t_{eng}$) decreased under the same test conditions. The maximum injection rate ($Q_{inj}$) of swirl nozzle injector was higher than base nozzle injector about 2~5%. The injection performance of swirl nozzle was better than base nozzle at low injection pressure ($P_{inj}$) and short energizing duration ($t_{eng}$) conditions.