• 제목/요약/키워드: Fuel Flow

검색결과 2,602건 처리시간 0.035초

분무액적과 벽의 상호작용에 대한 연구 (Study of Spray Droplet/Wall Interaction)

  • 양희천;유홍선;정연태
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.86-100
    • /
    • 1998
  • The impingement of the fuel spray on the wall within the combustion chamber in compact high-pressure injection engines and on the intake port wall in port-fuel-inje- ction type engines is unavoidable. It is important to understand the characteristics of impinging spray because it influences on the rate of fuel evaporation and droplet distrib- ution etc. In this study, the numerical study for the characteristics of spray/wall interaction is performed to test the applicability and reliability of spray/wall impingement models. The impingement models used are stick model, reflect model, jet model and Watkins and Park's model. The head of wall-jet eminating radilly outward from the spray impingement site contains a vortex. Small droplets are deflected away from the wall by the stagnation flow field and the gas wall-jet flow. While the larger droplets with correspondingly higher momentum are impinged on the wall surface and them are moved along the wall and are rolled up by wall-jet vortex. Using the Watkins and Park's model the predicted results show the most reasonable trend. The rate of increase of spread and the height of the developing wall-spray is predicted to decrease with increased ambient pressure(gas density).

  • PDF

Fabrication and Characterization of Wide Uranium Foils by Planar Flow Casting Method

  • Kim, Ki-Hwan;Park, Jae-Soon;Lee, Byung-Chul;Kim, Chang-Kyu
    • 한국주조공학회지
    • /
    • 제27권5호
    • /
    • pp.224-227
    • /
    • 2007
  • 원자로에 장전되는 $^{99}Mo$ 조사표적을 제조하기 위한 우라늄박판은, 박판 품질, 생산성, 경제성 문제로 인해, 기존의 열간압연방법에 의해 실험실 규모로는 제조가 가능하나, 상용 규모로는 제조되기 어려운 실정이므로, 새로운 제조방법의 개발이 요구되고 있다. 이와 같은 상황에서, $^{99m}Tc$의 모핵종인 방사선 동위원소$^{99}Mo$ 생산하기 위하여 planar flow casting (PFC) 법에 의해 다결정질 우라늄박판에 대한 새로운 제조방법이 연구되었다. $100{\sim}150\;{\mu}m$의 두께 및 너비 약 50mm의 연속적인 다결정질 우라늄박판이 하나의 batch에서 5m 이상의 길이로 제조되었다. 우라늄박판은 불순물이 거의 없었으며 양호한 표면조도를 가지고 있었다. 우라늄박판의 냉각를 접촉표면은 자유표면 보다 매끈한 자유표면을 가지고 있었다. 우라늄박판은 제조공정변수와는 상관없이 ${\alpha}-U$ 상을 가진 약 10 ${\mu}m$ 이하의 미세한 다결정립을 가지고 있었다.

연료전지 냉각판의 냉각 특성에 대한 수치해석적 연구 (Numerical Simulation on Cooling Plates in a Fuel Cell)

  • 김윤호;이용택;이규정;김용찬;최종민;고장면
    • 설비공학논문집
    • /
    • 제19권1호
    • /
    • pp.86-93
    • /
    • 2007
  • The PEM (polymer electrolyte membrane) fuel cell is one of the promising fuel cell systems as a new small power generating device for automobiles and buildings. The optimal design of cooling plates installed between MEA (membrane electrode assembly) is very important to achieve high performance and reliability of the PEMFC because it is very sensitive to temperature variations. In this study, six types of cooling plate models for the PEMFC including basic serpentine and parallel shapes were designed and their cooling performances were analyzed by using three-dimensional fluid dynamics with commercial software. The model 3 designed by revising the basic serpentine model represented the best cooling performance among them in the aspect of uniformity of temperature distribution and thermal reliability, The serpentine models showed higher pressure drop than the parallel models due to a higher flow rate.

LPI 차량용 연료필터하우징 개발 (Development of LPI Vehicle Fuel Filter Housing)

  • 이병훈;박성영
    • 한국산학기술학회논문지
    • /
    • 제15권2호
    • /
    • pp.653-659
    • /
    • 2014
  • 자동차용 LPI 연료필터 하우징의 냉간단조 공정에 대한 성형해석을 수행하였다. 변형과 하중의 분배를 고려하여 금형과 시제품을 제작하였다. 또한 기존 모델과 신규 모델의 유동 특성을 분석하기 위하여, 유동해석을 수행하였다. 유동해석 결과, 두 모델은 동등한 압력강하량을 나타내었다. 기존 제품 대비, 상부 하우징은 16 g, 하부 하우징은 30.5 g이 감소하여, 총 46.5 g의 중량이 감소하였다. 안정성을 검증하기 위해서 기밀시험 및 내압시험을 수행하였으며, 시험 기준을 만족하였다.

힘센서를 이용한 기상 연료의 과도적 분사율 계측에 관한 연구 (A Study on Transient Injection Rate Measurement of Gas Fuels Using Force Sensor)

  • 이재현;배규한;기영민;문석수
    • 한국분무공학회지
    • /
    • 제27권4호
    • /
    • pp.181-187
    • /
    • 2022
  • For carbon neutrality, direct-injection hydrogen engines are attracting attention as a future power source. It is essential to estimate the transient injection rate of hydrogen for the optimization of hydrogen injection in direct injection engines. However, conventional injection rate measurement techniques for liquid fuels based on the injection-induced fuel pressure change in a test section are difficult to be applied to gaseous fuels due to the compressibility of the gas and the sealing issue of the components. In this study, a momentum flux measurement technique is introduced to obtain the transient injection rate of gaseous fuels using a force sensor. The injection rate calculation models associated with the momentum flux measurement technique are presented first. Then, the volumetric injection rates are estimated based on the momentum flux data and the calculation models and compared with those measured by a volumetric flow rate meter. The results showed that the momentum flux measurement can detect the injection start and end timings and the transient and steady regimes of the fuel injection. However, the estimated volumetric injection rates showed a large difference from the measured injection rates. An alternative method is suggested that corrects the estimated injection rate results based on the measured mean volumetric flow rates.

Intelligent 2-DOF PID Control For Thermal Power Plant Using Immune Based Multiobjective

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1371-1376
    • /
    • 2003
  • In the thermal power plant, the main steam temperature is typically regulated by the fuel flow rate and the spray flow rate, and the reheater steam temperature is regulated by the gas recirculation flow rate. However, Strictly maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature, the change of the dynamic characteristics in the reheater. Up to the present time, PID Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. This paper focuses on tuning of the 2-DOF PID Controller on the DCS for steam temperature control using immune based multiobjective approach. The stable range of a 2-DOF parameter for only this system could be found for the start-up procedure and this parameter could be used for the tuning problem. Therefore tuning technique of multiobjective based on immune network algorithms in this paper can be used effectively in tuning 2-DOF PID controllers.

  • PDF

Intelligent Control of Power Plant Using Immune Algorithm Based Multiobjective Fuzzy Optimization

  • Kim, Dong-Hwa
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.525-530
    • /
    • 2003
  • This paper focuses on design of nonlinear power plant controller using immune based multiobjective fuzzy approach. The thermal power plant is typically regulated by the fuel flow rate, the spray flow rate, and the gas recirculation flow rate. However, Strictly maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature. the change of the dynamic characteristics in the steam-turbine system. Up to the present time, PID Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. These parameters tuned by multiobjective based on immune network algorithms could be used for the tuning of nonlinear power plant.

  • PDF

Cathode에 따른 휴대용 PEM 연료전지의 성능 변화 (Performance of the PEMFC for the mobile devices according to cathode)

  • 이세원;이강인;박민수;주종남
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.550-553
    • /
    • 2008
  • In this paper, experiments of air-breathing proton exchange membrane fuel cell (PEMFC) for mobile devices were carried out according to the cathode conditions. These conditions are defined by the cathode flow field plate type (the channel type, the open type) and the cathode surface direction. Single cell and 6-cell stack were used in this experiments. The experimental results showed that the open type cathode flow field plate gave better performance for small size PEMFCs because the open type cathode plate allowed better air convection than the channel type cathode plate. In the experiments related to the direction of the slits on the cathode flow field plate, the horizontal slit cell was better than the vertical slit cell. With respect to the cathode surface direction, when the cathode surface is placed in the direction normal to the ground, PEMFC generated more stable power in the mass transport loss region.

  • PDF

박용 디젤기관에서 스월유동이 연소특성에 미치는 영향 (The Effect of Swirl Flow on Combustion Characteristics in a Marine Diesel Engine)

  • 김병현;박권하;이상수;성낙원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권2호
    • /
    • pp.38-49
    • /
    • 2000
  • A diesel engine has been studied for many years to improve fuel economy and to reduce emissions as important factors governing the emission performance of diesel engines. This study addresses to swirl effects on combustion characteristics in a large diesel engine. The transport equations of flows and chemical reactions are given for fully compressible fluid. The simulations have been done for compression and expansion strokes and the results are given at several crank angles which are the angles at just before injection start, TDC, ATDC 90 and just before exhaust valve open. The results show that the strength of the swirl flow makes many effects on burning fuel and forming emissions.

  • PDF

SCV를 장착한 CNG 엔진의 연소 및 배출가스 특성 (Combustion and Emission Characteristics in CNG Engine with SCV)

  • 김진영;박원옥;공태원;하종률
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.1-6
    • /
    • 2003
  • Natural gas is one of the promising alternative fuels because of the abundant deposits and the cleanness of emission gas. CNG has a lot of merits except lower burning speed has a slow disadvantage. One way to overcome the disadvantage is to raise a turbulence intensity. We give various intake for changing turbulence intensity in the cylinder by three kinds of swirl control valve with a way to raise a turbulence intensity. In the present study, a $1.8\ell$ conventional gasoline engine is modified to use a CNG as a fuel instead of gasoline. We try to virify combustion and emission characteristics in each engine parameters. Parameters of experimentation are equivalence ratio, spark timing and intake flow change. The results of this study are as swirl flows. In the case of adding swirl flow, burning speed and torque are increased. But NOx and THC concentration are increased a little respectively.