• 제목/요약/키워드: Fuel Cell Vehicle

검색결과 419건 처리시간 0.035초

차량용 200bar 급 Type 3 복합재 압력용기의 개발 및 설계인증시험 (Development of high-pressure Type 3 composite cylinder for compressed hydrogen storage of fuel cell vehicle)

  • 정상수;박지상;김태욱;정재한
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.203-206
    • /
    • 2005
  • The objective of study on composite cylinder for alternative fuel vehicle is to develop safe, efficient, and commercially viable, on-board fuel storage system for the fuel cell vehicle or natural gas vehicle that use highly compressed gaseous fuel such as hydrogen or natural gas. This study presents the whole procedure of development and certification of a type 3 composite cylinder of 207bar service pressure and 70 liter water capacity, which includes design/analysis, processing of filament winding, and validation through various testing and evaluation. Design methods of liner configuration and winding patterns are presented. Three dimensional, nonlinear finite element analysis techniques are used to predict burst pressure and failure mode. Design and analysis techniques are verified through burst and cycling tests. The full qualification test methods and results for validation and certification are presented.

  • PDF

연료전지 시스템 자동차용 부동 냉각액 연구 (Study of Antifreeze Coolant for Fuel Cell System using the vehicle)

  • 조창렬;이홍기;정재훈;이미지
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.205-208
    • /
    • 2007
  • We aim to develop antifreezing coolant used to in the 200kW Fuel Cell system that is possible to starting at low temperature and that must not to be freezed under $-30^{\circ}C$, have high coductivity, excellent system protection ability and durability.

  • PDF

무인 항공기용 연료 전지 동력 시스템 개발 (Development of Fuel Cell Power System for Unmanned Aerial Vehicle)

  • 김태규;심현철;권세진
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.87-90
    • /
    • 2007
  • 장기 체공 무인 항공기를 위한 연료 전지 동력 시스템을 개발하였다. 기존의 고압 수소 저장 방식의 문제점을 해결하기 위해 높은 에너지 밀도를 갖는 액상의 화학 수소화물을 연료로 사용하였다. 수소화물을 전환하여 수소를 발생하는 연료 공급 장치는 촉매 반응기, 펌프, 연료 카트리지, 분리기, 제어기로 구성되어 있으며, 전력을 발생하기 위한 연료전지 스택과 함께 연료 전지 동력 시스템을 무인 항공기에 탑재하였다. 연료 전지 동력 시스템을 무인 항공기에 적용하기 위한 성능 검증을 수행하였다.

  • PDF

인산형 연료전지/축전지 복합 구동 자동차 개념 설계 (Basic Design of Phosphoric Acid Fuel Cell/Battery Hybrid Vehicle)

  • 이봉도;이원용;신동열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.59-61
    • /
    • 1996
  • Fuel cell systems offer high efficiencies for energy conservation for transportation application. In addition, they can operate on alcohols and alternative fuels, while producing little or no noxious emissions. The goal of the fuel cell in transportation should be research and commercialization of fuel cell vehicles as economic competitors for internal combustion engine vehicle. The objective of the present study is to analyze feasibility of the fuel cell/battery combination as a power source for a bus.

  • PDF

Effect of Temperature and Humidity on the Performance Factors of a 15-W Proton Exchange Membrane Fuel Cell

  • Dien Minh Vu;Binh Hoa Pham;Duc Pham Xuan;Dung Nguyen Dinh;Vinh Nguyen Duy
    • 공업화학
    • /
    • 제34권3호
    • /
    • pp.241-246
    • /
    • 2023
  • Fuel cells are one of the renewable energy sources that have sparked a lot of scientific attention for solving problems related to the energy crisis and environmental pollution. One of the most crucial subjects concerning the utilization of fuel cells is modeling. Therefore, an analytical steady-state and dynamic fuel cell model was described in this study. The parameter for the identification process was investigated, and the MATLAB/Simulink implementation was demonstrated. A 15-W proton exchange membrane fuel cell was used to apply the suggested modeling methodology. Comparing experimental and simulation findings indicated that the model error was constrained to 3%. This study showed that temperature and humidity affect fuel cell performance.

고분자 전해질 연료전지 하이브리드 무인 비행기의 설계, 제어, 평가 기법 리뷰 (Design, Control and Evaluation Methods of PEM Fuel Cell Unmanned Aerial Vehicle: A review)

  • 차문용;김민진;손영준;양태현
    • 한국수소및신에너지학회논문집
    • /
    • 제25권4호
    • /
    • pp.405-418
    • /
    • 2014
  • Fuel cells are suitable for a power plant of a unmanned aerial vehicle (UAV) as it is not only environmentally friendly and quiet but also more efficient than an internal combustion engine. A fuel cell hybrid UAV has better performance in endurance than a fuel cell only or battery only UAV. One of the key purposes of making fuel cell hybrid UAVs is having long endurance and now maximum 26 hours of flight is possible. Because optimal design and control methods for fuel cell hybrid UAVs are absolutely needed for their long endurance we have to check the methods. The aircraft made by using application-integrated design method has less BOP mass and better performances. The optimal design and control methods are generally based on computer simulations or Hardware-In-The-Loop simulations by using dynamic models for their design and control. The Hardware-In-The-Loop simulation (HILS) is to use a hardware device like a fuel cell stack as well as a simulation program and it allows for making optimally designed applications. This paper introduce efficient methods of design, control and evaluation for the fuel cell hybrid UAVs.

연료전지자동차의 고압수소저장시스템 수소 누출 안전성 평가 (The Evaluation of Hydrogen Leakage Safety for the High Pressure Hydrogen System of Fuel Cell Vehicle)

  • 김형기;최영민;김상현;심지현;황인철
    • 한국수소및신에너지학회논문집
    • /
    • 제23권4호
    • /
    • pp.316-322
    • /
    • 2012
  • A fuel cell vehicle has the hydrogen detection sensors for checking the hydrogen leakage because it use hydrogen for its fuel and can't use a odorant to protect the fuel cell stack. To verify the hydrogen safety of leakage we select the high possible leak points of fittings in hydrogen storage system and test the leaking behavior at them. The hydrogen leakage flow rate is 10, 40, 118 NL/min and the criterion for maximum hydrogen leakage is based on allowing an equivalent release of combustion energy as permitted by gasoline vehicles in FMVSS301. There are total 18EA hydrogen leakage detection sensors installed in test system. we acquire the hydrogen leakage detection time and determine the ranking. Hydrogen leakage detection time decrease when hydrogen leakage flow rate increase. The minimum hydrogen leakage detection time is about 3 seconds when the flow rate is 118NL/min. In this study, we optimize hydrogen sensor position in fuel cell vehicle and verify the hydrogen leakage safety because there is no inflow inside the vehicle.

연료전지 자동차용 질소/응축수 통합배출시스템 및 기술 개발 (Development of the Integrated Exhaust System and Techniques of Nitrogen and Condensate for Fuel Cell Electric Vehicle)

  • 심효섭;김효섭;김재훈;권부길;이현준;김치명;박용선
    • 한국수소및신에너지학회논문집
    • /
    • 제25권5호
    • /
    • pp.516-524
    • /
    • 2014
  • Proper discharge of nitrogen gas and water condensate is required in a conventional fuel cell system for performance, stability and durability of fuel cell stacks. Present study covers the development of integrated unit and its functioning logic for simultaneous nitrogen gas purge and water condensate drainage in a fuel cell vehicle system. Configuration of condensate drainage pipe, purge valve and level sensor is considered and optimized in physical integration. As a key factor, discharge time is considered and optimized based on the test result of constant-current operation with various operating temperature in logic development. Consequently, derived optimal values are applied and verified in actual vehicle drive mode test. Increase of system design flexibility, weight reduction and cost reduction are anticipated with this study. Additional study for physical and logical improvement is currently being implemented.

연료전지 자동차용 R-134a 전동식 히트펌프 시스템 개발에 관한 연구 (A Study on Electronically Controlled R-134a Heat Pump System for a Fuel Cell Electric Vehicle (FCEV))

  • 이준경;이동혁;원종필
    • 한국자동차공학회논문집
    • /
    • 제15권3호
    • /
    • pp.124-132
    • /
    • 2007
  • The main objective of this work is to investigate the characteristics of a heat pump system for fuel cell electric vehicle (FCEV). The present heat pump system adopts an electrically driven compressor running with R134a and uses the heat from the fuel cell stack as the heat source for the exterior heat exchanger. The experimental work has been done with various operating conditions such as different compressor speeds, fuel cell stack coolant temperatures and flow rates. The heating capacity was measured to be from 4 to 10 kW at $-20^{\circ}C$ ambient temperature, and the outlet temperature of interior heat exchanger was up to $70^{\circ}C$. After 30 seconds from start-up, the system reached a steady state and the heating capacity of 6.8 kW was acquired, and after 90 seconds, the air outlet temperature of interior heat exchanger became $35^{\circ}C$.