• Title/Summary/Keyword: Fuel Cell Hybrid Electric Vehicle

Search Result 68, Processing Time 0.023 seconds

Modeling of Hybrid Railway Vehicles with Hydrogen Fuel-Cell/Battery using a Rule-Based Algorithm (규칙기반 알고리즘을 이용한 수소연료전지/배터리 하이브리드 철도차량 모델링)

  • Oh, Yoon-Gi;Han, Byeol;Oh, Yong-Kuk;Ryu, Joon-Hyoung;Lee, Kyo-Beum
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.610-618
    • /
    • 2020
  • This paper presents the modeling of hybrid railway vehicles with hydrogen Fuel-Cells (FCs)/battery using a rule-based algorithm. The driving power of traction system is determined with the speed-torque curve by operation area of the electric machine and the electrical systems are modeled. The demanded power of electrical systems is set with the energy management system (EMS). The consumption of hydrogen is effectively managed with the subdivided operation region depending on the state of charge (SOC). The validity of the modeling is verified using MATLAB/Simulink.

Comparative Evaluation of the Cooling and Heating Performance of a $CO_2$ Heat Pump System for Vehicles (차량용 이산화탄소 열펌프 시스템의 냉난방 성능 비교평가)

  • Kim, Sung-Chul;Kim, Min-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.126-131
    • /
    • 2009
  • A $CO_2$ heat pump system was designed for both cooling and heating in the cabin of electric vehicles, hybrid vehicles or fuel cell vehicles, In this study, the performance characteristics of the heat pump system without any supplementary heating device were analyzed and the heating performance was compared with the cooling performance for various operating conditions. Experiments were carried out by changing the speed of electric drive compressor, the air flow rate of interior heat exchanger and the air inlet temperature and speed of exterior heat exchanger. Therefore, the cooling/heating capacities and the corresponding COPs are quantified. Also, the heat pump system showed an improved performance for the cooling operation and the heating operation. In this study, the experimental results can be used to evaluate the effect of system design changes on system performance as well as the development of a highly efficient heat pump system.

A Study on Timing Analysis of a CAN-Based Simulator for FCHEVs (CAN 기반 FCHEV 시뮬레이터의 시간 해석 연구)

  • Ahn, Bong-Ju;Lee, Nam-Su;Yang, Seung-Ho;Son, Jae-Young;Park, Young-Hwan;Ahn, Hyun-Sik;Jeong, Gu-Min;Kim, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.505-507
    • /
    • 2005
  • In this paper, a timing analysis is performed for the CAN-based simulator system for a fuel cell hybrid electric vehicles. The CAN protocol is recently being used for conventional vehicles, however, the network-induced delay can make the in-vehicle network system unstable. This problem may be occurred in the future vehicles because more ECUs are being required than recent vehicles. In order to develop a stable network-based control system, timing analysis is required at the design process. Throughout this analysis, timing parameters that affect transmission delay are examined and an effective method of predicting a sampling time for a stable communication via CAN protocol. In order to show the validityof suggested timing analysis. some experiments are performed using DSPs with CAN module.

  • PDF

The Future of NVH Research - A Challenge by New Powertrains

  • Genuit, Ing. K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.48-48
    • /
    • 2010
  • Sound quality and NVH-issues(Noise, Vibration and Harshness) of vehicles has become very important for car manufacturers. It is interpreted as among the most relevant factors regarding perceived product quality, and is important in gaining market advantage. The general sound quality of vehicles was gradually improved over the years. However, today the development cycles in the automotive industry are constantly reduced to meet the customers' demands and to react quickly to market needs. In addition, new drive and fuel concepts, tightened ecological specifications, increase of vehicle classes and increasing diversification(increasing market for niche vehicles), etc. challenge the acoustic engineers trying to develop a pleasant, adequate, harmonious passenger cabin sound. Another aspect concerns the general pressure for reducing emission and fuel consumption, which lead to vehicle weight reductions through material changes also resulting in new noise and vibration conflicts. Furthermore, in the context of alternative powertrains and engine concepts, the new objective is to detect and implement the vehicle sound, tailored to suit the auditory expectations and needs of the target group. New questions must be answered: What are appropriate sounds for hybrid or electric vehicles? How are new vehicle sounds perceived and judged? How can customer-oriented, client-specific target sounds be determined? Which sounds are needed to fulfil the driving task, and so on? Thus, advanced methods and tools are necessary which cope with the increasing complexity of NVH-problems and conflicts and at the same time which cope with the growing expectations regarding the acoustical comfort. Moreover, it is exceedingly important to have already detailed and reliable information about NVH-issues in early design phases to guarantee high quality standards. This requires the use of sophisticated simulation techniques, which allow for the virtual construction and testing of subsystems and/or the whole car in early development stages. The virtual, testing is very important especially with respect to alternative drive concepts(hybrid cars, electric cars, hydrogen fuel cell cars), where complete new NVH-problems and challenges occur which have to be adequately managed right from the beginning. In this context, it is important to mention that the challenge is that all noise contributions from different sources lead to a harmonious, well-balanced overall sound. The optimization of single sources alone does not automatically result in an ideal overall vehicle sound. The paper highlights modern and innovative NVH measurement technologies as well as presents solutions of recent NVH tasks and challenges. Furthermore, future prospects and developments in the field of automotive acoustics are considered and discussed.

  • PDF

The Electro-Magnetic Susceptibility Test Method of a Road Vehicle Considering the Field Uniformity (전계의 균일성을 고려한 자동차의 전자파 내성시험 방법에 관한 연구)

  • Bae, Min-Gwan;Shin, Jae-Kon;Yong, Gee-Joong;Woo, Hyun-Gu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.84-91
    • /
    • 2010
  • Owing to revolutionary developments in automobile technologies, a variety of advanced vehicles - hybrid vehicle, hydrogen fuel-cell vehicle, electric vehicle, etc. - emerges recently. The safety is getting more important for developing automobiles. The electro-magnetic compatibility has to be assured, since those advanced vehicles are equipped with various new electronic systems. Electro-magnetic compatibility tests, in general, consist of an EMI(electro-magnetic interference) test and an EMS (electro-magnetic susceptibility) test. We investigated the susceptibility test method suggested in KMVSS (Korean Motor Vehicle Safety Standard) as the EMS test method. A series of experiments results that the above test method should be partially revised to comply with a Korean governmental standard method. In this paper, the some directions of modifications are presented to enhance the quality of the above EMS test method.

Flight Test of Hybrid Propulsion System for Electrically Powered UAV (전기동력 무인기용 하이브리드 추진시스템 비행시험)

  • Park, Poomin;Kim, Keunbae;Cha, Bongjun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.4
    • /
    • pp.49-55
    • /
    • 2013
  • This paper deals with the flight test of propulsion system of middle size electrically powered UAV (EAV2, Electric Aerial Vehicle 2) which is under development in KARI. EAV2 is low speed endurance type UAV whose wing span is 6.9 m, and weight is 18 kg. The UAV has flown for 22 hours in June of 2012. The flight test result showed that the propulsion system worked well suppling power for any circumstances during the test flight. Each power source worked according to the design purpose.

Study of EMB System Using Wedge Structure (웨지 구조를 이용한 전기기계브레이크 시스템 연구)

  • Shin, Dong-Hwan;Kwon, Oh-Seok;Bae, Jun-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.8-18
    • /
    • 2010
  • According to the needs of change to hybrid, fuel cell and electric vehicle, and to the increasing demand for safety and eco-friendliness, the necessity of Electro-Mechanical Brake(EMB) is being increased. But, one of the most important problems for realizing EMB to the practical use is that the required motor power for braking is too high. So the high braking efficient EMB is required. In recent years, the Electronic Wedge Brake(EWB) is noticeable for the high braking efficiency. In this research, we examine the improvable matter of the recent published EWB, and we propose the improved mechanism and the cost effective control method using this mechanism. And we test these feasibility by experiment and discuss these meaning and effect.

Electrochemical Study of Electrode Material of Ni-MH Battery for HEV and PEMFC Fuel Cell (HEV 및 PEMFC 연료전지용 니켈수소 전지의 전극재료에 대한 전기화학적 평가)

  • Kim, Ho-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.2
    • /
    • pp.24-28
    • /
    • 2006
  • Electrochemical hydrogenation/dehydrogenation properties were studied for a single particle of a Mm-based(Mm : misch metal) hydrogen storage alloy($MmNi_{3.55}Co_{0.75}Mn_{0.4}Al_{0.3}$) for the anode of Ni-MH batteries. A carbon fiber microelectrode was manipulated to make electrical contact with an alloy particle, and the cyclic voltammetry and the galvanostatic charge/discharge experiments were performed. A single particle of the alloy showed the discharge capacity of 280[mAh/g], the value being 90[%] of the theoretical capacity. Data were compared with that of the composite film consisting of the alloy particles and a polymer binder, which is more practical form for Ni-MH batteries. Additionally, pulverization of the alloy particles are directly observed. Compared with the conventional composite film electrodes, the single particle measurements using the microelectrode gave more detailed, true information about the hydrogen storage alloy.