• Title/Summary/Keyword: Fuel Cell Generation System

Search Result 326, Processing Time 0.028 seconds

A Study on the Strategy of Smart Charging System to Charge the PHEV in the House Which has a 1 kW Fuel Cell Cogeneration System (1 kW 급 가정용 연료전지 코제너레이션 시스템이 설치된 주택 내 플러그인 하이브리드 자동차의 스마트 충전전략 연구)

  • Roh, Chul-Woo;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.838-843
    • /
    • 2008
  • Cause of struggling to escape from dependency of fossil fuels, the fuel cell and the Plug-in Hybrid Electric Vehicle (PHEV) draw attention in the all of the world. Especially, the Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems have been anticipated for next generation's energy supplying system, and we can predict the PHEV will enlarge the market share in the next few years to reduce not only the air pollution in the metropolis but the fuel-expenses of commuters. This paper presents simulation results about the strategy of smart charging system for PHEV in the residential house which has 1 kW PEMFC cogeneration system. The smart charging system has a function of recommending the best time to charge the battery of PHEV by the lowest energy cost. The simulated energy cost for charging the battery based on the electricity demand data pattern in the house. The house which floor area is $132\;m^2$ (40 pyeong.). In these conditions, the annual gasoline, electricity, and total energy cost to fuel the PHEV versus Conventional Vehicle (CV) have been simulated in terms of cars' average life span in Korea.

  • PDF

Analysis of the Operating Point and Fault Current Contribution of a PEMFC as Distributed Generation (DG)

  • Moon, Dae-Seong;Kang, Gi-Hyeok;Chung, Il-Yop;Won, Dong-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.382-388
    • /
    • 2009
  • Recently, hydrogen energy has been anticipated to change the paradigm of conventional power systems because it can expand sustainable energy utilization and conceptually provide remarkable flexibility to power system operation. Since hydrogen energy can be converted to electric energy through fuel cells, fuel cells are expected to play an important role in the future hydrogen economy. In this paper, a Proton Exchange Membrane Fuel Cell (PEMFC) is modeled as an equivalent circuit and its steady-state characteristics investigated using the model. PEMFCs can be connected to power systems through power conditioning systems, which consist of power electronic circuits, and which are operated as distributed generators. This paper analyzes the effects of the characteristics of the PEMFC internal voltages and investigated the dynamic responses of the PEMFC under fault conditions. The results show that the fault current contribution of the PEMFC is different from those of conventional generators and is closely related to its operating point.

Comparative Performance Analysis of Small Pressurized Fuel Cell/Gas Turbine Hybrid Systems (소형 가압형 연료전지/가스터빈 하이브리드 시스템의 성능 비교해석)

  • Park, Sung-Ku;You, Byung-June;Kim, Tong-Seop;Sohn, Jeong-L.;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.9
    • /
    • pp.652-658
    • /
    • 2008
  • Design performances of the fuel cell / gas turbine hybrid power generation systems based on two different fuel cells (PEMFC, SOFC) have been comparatively analyzed. In each system, the fuel cell operates at an elevated pressure corresponding to the compressed air pressure of the gas turbine. Both internally and externally reformed systems were analyzed for the SOFC hybrid system. Component design parameters of 10kW class small systems are assumed. For all hybrid systems, increasing the turbine inlet temperature increases the power portion of the gas turbine. With increasing the turbine inlet temperature, system efficiency decreases in the PEMFC system and the internally reformed SOFC system while that of the externally reformed SOFC system increases slightly. The internally reformed SOFC hybrid system is predicted to exhibit the best system efficiency.

DC Micro-Grid Operational Analysis with a Detailed Simulation Model for Distributed Generation

  • Lee, Ji-Heon;Kim, Hyun-Jun;Han, Byung-Moon;Jeong, Yu-Seok;Yang, Hyo-Sik;Cha, Han-Ju
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.350-359
    • /
    • 2011
  • This paper describes the operational analysis results of a DC micro-grid using a detailed model of distributed generation. A detailed model of wind power generation, photo-voltaic generation and fuel cell generation was implemented with an userdefined model created with PSCAD/EMTDC software and coded in C-language. The operational analysis was carried out using PSCAD/EMTDC software, in which the power circuit is implemented by a built-in model and the controller is modeled by an user-defined model that is also coded in C-language. Various simulation results confirm that a DC micro-grid can operate without any problems in both the grid-tied mode and in the islanded mode. The operational analysis results confirm that the DC micro-grid makes it feasible to provide power to the load stably. It can also be utilized to develop an actual system design.

A Study on Development of High Efficiency PCS using in PEMFC Generation System (PEMFC 발전시스템용 고효율 PCS 개발에 관한 연구)

  • Kwak, Dong-Kurl;Jung, Won-Seok;Jung, Do-Young;Kim, Choon-Sam;Shim, Jae-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.266-268
    • /
    • 2009
  • In this paper, authors deal with a power conditioning system (PCS) of high efficiency for a proton exchange membrane fuel cell (PEMFC) generation system. Fuel cells are a direct current (DC) power generators. They generate electricity through an electrochemical process that converts the energy stored in a fuel directly into electricity. Fuel cells have many benefits, which produce no particulate matter, nitrogen or sulfur oxides. And they have few moving parts and produce little or no noise. When fueled by hydrogen, they yield only heat and water as byproducts. Their wide application can reduce our dependence on fossil fuels and foreign sources of petroleum. This paper studies on a novel PCS circuit topology of high efficiency using in PEMFC generation system The controlling switches in the PCS is operated to soft switching. Some digital simulation results and experimental results for the proposed PCS is confirmed to the validity of the analytical results.

  • PDF

A Real Options Analysis on Fuel Cell Power Plant considering Mean Reverting Process of Electricity Price (전력가격 평균회귀성을 고려한 연료전지 발전의 실물옵션 분석)

  • Park, Hojeong;Nam, Youngsik
    • Environmental and Resource Economics Review
    • /
    • v.27 no.4
    • /
    • pp.613-637
    • /
    • 2018
  • Fuel cell power plant which has advantages as a distributed generation is influenced by high cost of investment and uncertainty of electricity price. This study suggests the model of real options which considers the irreversibility of investment in the fuel cell plant and the uncertainty of electricity price. Most models of real options assume the geometric Brownian motion for convenience, but this study develops the model for the feasibility analysis considering the mean reverting process of electricity price, with the closed form solution on the value of investment option. The result of the empirical analysis considering the data related to the fuel cell generation with the scale of 20MW and the domestic RPS circumstance represents that the investment is feasible without the uncertainty, and is not feasible with the uncertainty. This result implies that the political support as well as the improvement of profit system including revenue and cost are necessary for the activation of the fuel cell power plant.

Development of WT-FC Hybrid System for Off-Grid (오프그리드용 풍력-연료전지 하이브리드 시스템 개발)

  • Choi, Jong-Pil;Kim, Kwang-Soo;Park, Nae-Chun;Kim, Sang-Hun;Kim, Byeong-Hee;Yu, Neung-Su
    • New & Renewable Energy
    • /
    • v.3 no.2 s.10
    • /
    • pp.60-67
    • /
    • 2007
  • This paper describes the design and integration of the wind-fuel cell hybrid system. The hybrid system components included a wind turbine, an electrolyzer (for generation of H2), a PEMFC (Proton Exchange Membrane Fuel Cell), hydrogen storage tank and BOP (Balance of Plant) system. The energy input is entirely provided by a wind turbine. A DC-DC converter controls the power input to the electrolyzer, which produces hydrogen and oxygen form water. The hydrogen used the fuel for the PEMFC. Hydrogen may be produced and stored in high pressure tank by hydrogen gas booster system. Wind conditions are changing with time of day, season and year. So, wind power is a variable energy source. The main purpose with these WT-FC hybrid system is to store hydrogen by electrolysis of water when wind conditions are good and release the stored hydrog en to supply the fuelcell when wind is low.

  • PDF

Fuel Cell as an Alternative Distributed Generation Source under Deregulated Power System (규제가 없는 전력계통에서 대체분산형전원으로서의 연료전지)

  • Lee, Kwang-Y.;Kim, Se-Ho;Kim, Eel-Whan;Kim, Ho-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.331-332
    • /
    • 2006
  • This paper proposes the fuel cell power plants as alternative energy sources for distributed generation in Jeju Island, Korea. This will help to increase the fuel efficiency, at least double the current thermal power plants, decrease environmental pollution, virtually to none, increase the reliability of power supply, reducing the dependency of the HVDC link, and provide quality power to the growing infrastructure in meeting the requirements for the free-trade international island.

  • PDF

Research Trend of Organic/Inorganic Composite Membrane for Polymer Electrolyte Membrane Fuel Cell (고분자 전해질 연료전지용 유.무기 복합막의 연구개발동향)

  • Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.155-170
    • /
    • 2012
  • Fuel cells have been considered as alternative power generation system in the twenty-first century because of eco-friendly system, high power density and efficiency compare with petroleum engine system. Proton exchange membranes (PEMs) are the key components in fuel cell system. Currently, Nafion has been used in fuel cell system. However, Nafion has disadvantages such as low conductivity at high temperature and high cost. The researchers have focused to reach the high properties such as high proton conductivity, low permeability to fuel, good chemical/thermal stability, good mechanical properties and low manufacturing cost. Various methods have been developed for preparation of proton exchange membrane with high performance and commercialization of fuel cell system. The hybrid organic/inorganic membrane has the potentials to provide a unique combination of organic and inorganic properties with improved proton conductivity and mechanical property at high temperatures. So, this paper presents an overview of research trend for the composite membranes prepared by organic/inorganic system using various inorganic materials.

Optimal Design of RSOFC System Coupled with Waste Steam Using Ejector for Fuel Recirculation (연료 재순환 이젝터를 이용한 연료전지-폐기물 기반 가역 고체 산화물 연료전지의 최적 설계)

  • GIAP, VAN-TIEN;LEE, YOUNG DUK;KIM, YOUNG SANG;QUACH, THAI QUYEN;AHN, KOOK YOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.4
    • /
    • pp.303-311
    • /
    • 2019
  • Reversible solid oxide fuel cell (RSOFC) has become a prospective device for energy storage and hydrogen production. Many studies have been conducted around the world focusing on system efficiency improvement and realization. The system should have not only high efficiency but also a certain level of simplicity for stable operation. External waste steam utilization was proved to remarkably increase the efficiency at solid oxide electrolysis system. In this study, RSOFC system coupled with waste steam was proposed and optimized in term of simplicity and efficiency. Ejector for fuel recirculation is selected due to its simple design and high stability. Three system configurations using ejector for fuel recirculation were investigated for performance of design condition. In parametric study, the system efficiencies at different current density were analyzed. The system configurations were simulated using validated lumped model in EBSILON(R) program. The system components, balance of plants, were designed to work in both electrolysis and fuel cell modes, and their off-design characteristics were taken into account. The base case calculation shows that, the system with suction pump results in slightly lower efficiency but stack can be operated more stable with same inlet pressure of fuel and air electrode.